A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polymerization-induced photothermy: A non-donor-acceptor approach to highly effective near-infrared photothermal conversion nanoparticles. | LitMetric

Polymerization-induced photothermy: A non-donor-acceptor approach to highly effective near-infrared photothermal conversion nanoparticles.

Biomaterials

Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China; School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, PR China. Electronic address:

Published: October 2020

Photothermal conversion nanoagents based on conjugated polymers (CPs) are attracting increasing attention for in vivo disease theranostics and high-performing ones are in urgent pursuit. Herein, we report a new and non-donor-acceptor approach to photothermal conversion CPs that combine several merits including low bandgaps, strong near-infrared absorption, low intersystem crossing rate and non-emissive nature. Three CPs based on 6,7; 6',7'-fused isoindigos (nIIDs), i.e., P2IIDV, P3IIDV and P4IIDV that have optical bandgaps of 1.30, 1.22 and 1.17 eV, respectively, are synthesized. The nanoparticles (NPs) of the CPs in water are prepared via nanocoprecipitation, which are non-fluorescent due to the rapid intramolecular twisting in the CP backbone within NPs, enabling most of the excitation energy flow to generate heat. The photothermal conversion efficiencies of the NPs as measured under irradiation at 808, 880 and 980 nm are 62.4%, 40.5% and 15.8% for P2IIDV, 65.1%, 41.0% and 38.9% for P3IIDV and 71.5%, 48.9% and 41.7% for P4IIDV, which are significantly higher than indocyanine green and many popularly reported photothermal conversion materials. In vivo studies using xenograft 4T1 tumor-bearing mouse model demonstrate that the P4IIDV NPs can serve as a rather effective photothermal conversion nanoagent for enhanced photoacoustic imaging and photothermal therapy of tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2020.120179DOI Listing

Publication Analysis

Top Keywords

photothermal conversion
24
non-donor-acceptor approach
8
photothermal
7
conversion
6
polymerization-induced photothermy
4
photothermy non-donor-acceptor
4
approach highly
4
highly effective
4
effective near-infrared
4
near-infrared photothermal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!