Cytosolic ascorbate peroxidase 1 modulates ascorbic acid metabolism through cooperating with nitrogen regulatory protein P-II in tea plant under nitrogen deficiency stress.

Genomics

Tea Science Research Institute, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

Published: September 2020

Nitrogen (N) element is essential nutrient, and affect metabolism of secondary metabolites in higher plants. Ascorbate peroxidase (APX) plays an important role in ascorbic acid (AsA) metabolism of tea plant. However, the roles of cytosolic ascorbate peroxidase 1 (CsAPX1) in AsA metabolism under N deficiency stress in tea plant remains unclear in detail. In this work, nitrogen regulatory protein P-II (CsGLB1) and CsAPX1 were identified by isobaric tags for relative and absolute quantitation (iTRAQ) from tea plant. The cell growth rates in transgenic Escherichia coli overexpressing CsAPX1 and CsGLB1 were higher than empty vector under N sufficiency condition. Phenotype of shoots and roots, AsA accumulation, and expression levels of AtAPX1 and AtGLB1 genes were changed in transgenic Arabidopsis hosting CsAPX1 under N deficiency stress. These findings suggested that cytosolic CsAPX1 acted a regulator in AsA accumulation through cooperating with GLB1 under N deficiency stress in tea plant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2020.06.025DOI Listing

Publication Analysis

Top Keywords

tea plant
20
deficiency stress
16
ascorbate peroxidase
12
cytosolic ascorbate
8
ascorbic acid
8
nitrogen regulatory
8
regulatory protein
8
protein p-ii
8
asa metabolism
8
stress tea
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!