β-glucosidases have received considerable attention due to their essential role in bioethanol production from lignocellulosic biomass. β-glucosidase can hydrolyse cellobiose in cellulose degradation and its low activity has been considered as one of the main limiting steps in the process. Large-scale conversions of cellulose therefore require high enzyme concentration which increases the cost. β-glucosidases with improved activity and thermostability are therefore of great commercial interest. The fungus Trichoderma reseei expresses thermostable cellulolytic enzymes which have been widely studied as attractive targets for industrial applications. Genetically modified β-glucosidases from Trichoderma reseei have been recently commercialised. We have developed an approach in which screening of low molecular weight molecules (fragments) identifies compounds that increase enzyme activity and are currently characterizing fragment-based activators of TrBgl2. A structural analysis of the 55 kDa apo form of TrBgl2 revealed a classical (α/β)-TIM barrel fold. In the present study we present a partial assignment of backbone chemical shifts, along with those of the Ile (I)-Val (V)-Leu (L) methyl groups of TrBgl2. These data will be used to characterize the interaction of TrBgl2 with the small molecule activators.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7462900 | PMC |
http://dx.doi.org/10.1007/s12104-020-09959-2 | DOI Listing |
World J Microbiol Biotechnol
March 2024
Posgrado en Biotecnología, Ex-Hacienda de Santa Bárbara, Universidad Politécnica de Pachuca, Mpio., Carretera Pachuca Cd. Sahagún Km. 20, C.P. 43830, Zempoala, Hgo, Mexico.
The present study evaluated the performance of the fungus Trichoderma reesei to tolerate and biodegrade the herbicide diuron in its agrochemical presentation in agar plates, liquid culture, and solid-state fermentation. The tolerance of T. reesei to diuron was characterized through a non-competitive inhibition model of the fungal radial growth on the PDA agar plate and growth in liquid culture with glucose and ammonium nitrate, showing a higher tolerance to diuron on the PDA agar plate (inhibition constant 98.
View Article and Find Full Text PDFBiomacromolecules
February 2021
Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, Madrid 28049, Spain.
The functionalization of the internal surface of macroporous carriers with glyoxyl groups has proven to highly stabilize a large variety of enzymes through multipoint covalent immobilization. In this work, we have translated the surface chemistry developed for the fabrication of glyoxyl-agarose carriers to macroporous cellulose (CEL). To that aim, CEL-based microbeads were functionalized with glyoxyl groups through a stepwise alkoxylation (or alkylation)/oxidation synthetic scheme.
View Article and Find Full Text PDFBiomol NMR Assign
October 2020
YSBL, Department of Chemistry, University of York, Heslington, York, UK.
β-glucosidases have received considerable attention due to their essential role in bioethanol production from lignocellulosic biomass. β-glucosidase can hydrolyse cellobiose in cellulose degradation and its low activity has been considered as one of the main limiting steps in the process. Large-scale conversions of cellulose therefore require high enzyme concentration which increases the cost.
View Article and Find Full Text PDFInt J Biol Macromol
October 2019
Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA.
We report cloning and expressing of recombinant human VEGF-A, fused at the N-terminal with Hydrophobin II (HFBII) from Trichoderma reseei, in yeast Pichia pastoris. We validated the construct using SDS-PAGE and ELISA against VEGF-A and efficiently performed protein purification and enrichment based on HFBII counterpart and using an aqueous two-phase system (ATPS) with nonionic surfactant X-114. We studied the effects of various culture medium additives and interaction effects of positive factors to increase the recombinant HFBII-VEGF-A production.
View Article and Find Full Text PDFInt J Biol Macromol
May 2019
Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, 1000 Arlindo Bettio Avenue, 03828-000 São Paulo, Brazil. Electronic address:
Epoxide hydrolases (EHs) are enzymes involved in the metabolism of endogenous and exogenous epoxides, and the development of EH inhibitors has important applications in the medicine. In humans, EH inhibitors are being tested in the treatment of cardiovascular diseases and show potent anti-inflammatory effects. EH inhibitors are also considerate promising molecules against infectious diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!