The yield of crops is largely affected by different types of biotic stresses. To minimize the damage, crop plants adapted themselves to overcome the stress conditions through gene expression reprogramming at transcriptional and post-transcriptional levels. With a better knowledge of plants' responses in adverse environments, new methodologies and strategies have been applied to develop better stress-tolerant plants. In this manner, small RNAs (micro RNA and small-interfering RNA) are reported to play a central role to combat biotic stresses in plants. Depending upon the stress stimuli, these small RNAs can up or down regulate the genes expression, that indicate their potential role in overcoming the stress. These stress-induced small RNAs may reduce the expression of the target gene(s) that might negatively influence plants' response to the adverse conditions. Contrariwise, miRNA, a class of small RNA, can downregulate its expression to upregulate the expression of the target gene(s), which might positively aid to the stress adaptation. Along with this, benefits of RNA interference (RNAi) have also been stated in functional genomic research on insects, fungi and plant pathogens. RNAi is involved in the safe transport of dsRNA to the targeted mRNA(s) in the biotic stress-causing agents (for example fungi and insects) and saves the plant from damage, which is a safer approach compared to use of chemical pesticides. The current review summarizes the role of small RNAs and the use of RNAi to save the plants from biotic stress conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-020-05583-4 | DOI Listing |
J Virol
January 2025
Center for Virus-Host Innate Immunity, Rutgers New Jersey Medical School, Newark, New Jersey, USA.
Betacoronaviruses express a small internal (I) protein that is encoded by the same subgenomic RNA (sgRNA) as the nucleocapsid (N) protein. Translation of the +1 reading frame of the N sgRNA through leaky ribosomal scanning leads to expression of the I protein. The I protein is an accessory protein reported to evade host innate immune responses during coronavirus infection.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Retinal pathological angiogenesis (PA) is a common hallmark in proliferative retinopathies, including age-related macular degeneration (AMD), proliferative diabetic retinopathy (PDR), and retinopathy of prematurity (ROP). The mechanisms underlying PA is complex and incompletely understood. In this study, we investigated the role of extracellular matrix (ECM) protein biglycan (BGN) in PA using an oxygen-induced retinopathy (OIR) mouse model, along with hypoxia (1% O) conditions for incubating pericytes and endothelial cells in vitro.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA.
Triple-negative breast cancer (TNBC) is infamous for its aggressive phenotype and poorer prognosis when compared to other breast cancer subtypes. One factor contributing to this poor prognosis is that TNBC lacks expression of the receptors that available hormonal or molecular-oriented therapies attack. New treatments that exploit biological targets specific to TNBC are desperately needed to improve patient outcomes.
View Article and Find Full Text PDFCytotechnology
February 2025
Department of Gynecology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003 Guizhou China.
Unlabelled: Cervical cancer (CC) represents one of the important cancers affecting global female population worldwide. We sought to elucidate the roles and mechanisms of KIAA1429 in the malignant properties of CC cells and the epithelial-mesenchymal transition (EMT) process. KIAA1429 was predicted to be abnormally expressed in CC and correlate with shortened survival of CC patients by GEPIA2 and GSCA databases.
View Article and Find Full Text PDFRSC Chem Biol
December 2024
Department of Biochemistry, University of Colorado Boulder CO 80309-0596 USA +1 303 492 5894 +1 303 735 2159 +1 303 492 1945.
Linkers in chemical biology provide more than just connectivity between molecules; their intrinsic properties can be harnessed to enhance the stability and functionality of chemical probes. In this study, we explored the incorporation of a peptide nucleic acid (PNA)-based linker into RNA-targeting probes to improve their affinity and specificity. By integrating a PNA linker into a small molecule probe of the Riboglow platform, we enabled dual binding events: cobalamin (Cbl)-RNA structure-based recognition and sequence-specific PNA-RNA interaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!