Coronavirus disease 2019 (COVID-19) is an infectious disease, caused by severe acute respiratory syndrome coronavirus 2, which predominantly affects the lungs and, under certain circumstances, leads to an excessive or uncontrolled immune activation and cytokine response in alveolar structures. The pattern of pro-inflammatory cytokines induced in COVID-19 has similarities to those targeted in the treatment of rheumatoid arthritis. Several clinical studies are underway that test the effects of inhibiting IL-6, IL-1β or TNF or targeting cytokine signalling via Janus kinase inhibition in the treatment of COVID-19. Despite these similarities, COVID-19 and other zoonotic coronavirus-mediated diseases do not induce clinical arthritis, suggesting that a local inflammatory niche develops in alveolar structures and drives the disease process. COVID-19 constitutes a challenge for patients with inflammatory arthritis for several reasons, in particular, the safety of immune interventions during the pandemic. Preliminary data, however, do not suggest that patients with inflammatory arthritis are at increased risk of COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304381 | PMC |
http://dx.doi.org/10.1038/s41584-020-0451-z | DOI Listing |
Surg Radiol Anat
January 2025
Division of Anatomy, Department 1, Faculty of Dentistry, "Carol Davila" University of Medicine and Pharmacy, Bucharest, RO-020021, Romania.
Purpose: The maxillary tuberosity, a critical anatomical landmark in dentistry and maxillofacial surgery, is burdened by terminological confusion. This inconsistency hampers clinical practice and communication across disciplines.
Method: Different resources were used to argue for the necessity of standardising the terminology related to maxillary tuberosity to enhance diagnostic precision and ultimately improve patient outcomes.
Adv Healthc Mater
January 2025
School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
Orthopedic, maxillofacial, and complex dentoalveolar bone grafting procedures that require donor-site bone harvesting can be associated with post-surgical complications. There has been widespread adoption of exogenously sourced particulate bone graft materials (BGM) for bone regenerative procedures; however, the particulate nature of these materials may lead to compromised healing outcomes, mainly attributed to structural collapse of the BGM, prolonged tissue healing. In this study, a fully synthetic thermoresponsive hydrogel-based universal carrier matrix (TX) that forms flowable and shapable putties with different BGMs while spatially preserving the particles in a 3D scaffold at the implantation site is introduced.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Faculty of Dentistry, National University of Singapore, Singapore, Singapore.
Advances in tissue engineering and microfluidic technologies have enabled the development of sophisticated models known as organ-on-a-chip (OoC) or microphysiological systems. These systems enable to potential to simulate the dynamic interactions between host tissues and their microenvironment including microbes, biomaterials, mechanical forces, pharmaceutical, and consumer-care products. These fluidic technologies are increasingly being utilized to investigate host-microbe and host-material interactions in oral health and disease.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Cell Biology Laboratory, Federal University of Alagoas, Maceió, Brazil.
The epithelial-mesenchymal transition (EMT) is a biological process in which epithelial cells change into mesenchymal cells with fibroblast-like characteristics. EMT plays a crucial role in the progression of fibrosis. Classical inducers associated with the maintenance of EMT, such as TGF-β1, have become targets of several anti-EMT therapeutic strategies.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Faculty of Dentistry Department of Oral and Maxillofacial Radiology, Ondokuz Mayıs University, Atakum/Samsun, Turkey.
Aim: This study aimed to evaluate the prevalence, location and diameters of Posterior superior alveolar artery (PSAA) and Infraorbital foramen (IOF) to find out whether there is any relationship between PSAA and IOF, and to predict their location relative to each other in surgical procedures by using cone beam computed tomography (CBCT).
Material And Method: Bilateral maxillary sinuses were analysed retrospectively in 170 patients with no missing teeth in the maxillary posterior region. The largest locations of PSAA and IOF in the maxillary sinus were determined and their size, shape, location in relation to the teeth and distances from anatomical points were evaluated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!