Common fragile sites (CFSs) are genomic loci prone to the formation of breaks or gaps on metaphase chromosomes. They are hotspots for chromosome rearrangements and structural variations, which have been extensively implicated in carcinogenesis, aging, and other pathological processes. Although many CFSs were identified decades ago, a consensus is still lacking for why they are particularly unstable and sensitive to replication perturbations. This is in part due to the lack of high-resolution mapping data for the vast majority of the CFSs, which has hindered mechanistic interrogations. Here, we seek to map human CFSs with high resolution on a genome-wide scale by sequencing the sites of mitotic DNA synthesis (MiDASeq) that are specific for CFSs. We generated a nucleotide-resolution atlas of MiDAS sites (MDSs) that covered most of the known CFSs, and comprehensively analyzed their sequence characteristics and genomic features. Our data on MDSs tallied well with long-standing hypotheses to explain CFS fragility while highlighting the contributions of late replication timing and large transcription units. Notably, the MDSs also encompassed most of the recurrent double-strand break clusters previously identified in mouse neural stem/progenitor cells, thus bridging evolutionarily conserved break points across species. Moreover, MiDAseq provides an important resource that can stimulate future research on CFSs to further unravel the mechanisms and biological relevance underlying these labile genomic regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785011 | PMC |
http://dx.doi.org/10.1038/s41422-020-0357-y | DOI Listing |
Clin Imaging
January 2025
Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, United States of America. Electronic address:
Purpose: To develop an educational, interactive, ultra-high resolution, in vivo magnetic resonance (MR) neurography atlas for direct visualization of the brachial plexus and upper extremity.
Methods: A total of 16 adult volunteers without known peripheral neuropathy underwent magnetic resonance (MR) neurography of the brachial plexus and upper extremity. To improve vascular suppression, subjects received an intravenous infusion of ferumoxytol.
Hum Brain Mapp
January 2025
Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany.
The present study investigated the neuromodulatory substrates of salience processing and its impact on memory encoding and behaviour, with a specific focus on two distinct types of salience: reward and contextual unexpectedness. 46 Participants performed a novel task paradigm modulating these two aspects independently and allowing for investigating their distinct and interactive effects on memory encoding while undergoing high-resolution fMRI. By using advanced image processing techniques tailored to examine midbrain and brainstem nuclei with high precision, our study additionally aimed to elucidate differential activation patterns in subcortical nuclei in response to reward-associated and contextually unexpected stimuli, including distinct pathways involving in particular dopaminergic modulation.
View Article and Find Full Text PDFThe human heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is a prototypical RNA-binding protein essential in regulating a wide range of post-transcriptional events in cells. As a multifunctional protein with a key role in RNA metabolism, deregulation of its functions has been linked to neurodegenerative diseases, tumour aggressiveness and chemoresistance, which has fuelled efforts to develop novel therapeutics that modulates its RNA binding activities. Here, using a combination of Molecular Dynamics (MD) simulations and graph neural network pockets predictions, we showed that hnRNPA1 N-terminal RNA binding domain (UP1) contains several cryptic pockets capable of binding small molecules.
View Article and Find Full Text PDFAnn Glob Health
January 2025
ARC Institute, Surabaya, Indonesia.
Ensuring timely access to safe and affordable surgery within a travel time of a 2‑h drive or 30‑min walk is crucial for achieving universal health coverage, as endorsed by the Lancet Commission on Global Surgery (LCoGS). In this study, we aimed to quantify the percentage of Indonesian women of reproductive age (WRA) who can access a hospital with emergency obstetric and gynecological services within this time frame. In addition, we aimed to identify the underserved populations.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States.
ConspectusProtein higher-order structure (HOS) is key to biological function because the mechanisms of protein machinery are encoded in protein three-dimensional structures. Mass spectrometry (MS)-based protein footprinting is advancing protein structure characterization by mapping solvent-accessible regions of proteins and changes in H-bonding, thereby providing higher order structural information. Footprinting provides insights into protein dynamics, conformational changes, and interactions, and when conducted in a differential way, can readily reveal those regions that undergo conformational change in response to perturbations such as ligand binding, mutation, thermal stress, or aggregation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!