Physical neural networks made of analog resistive switching processors are promising platforms for analog computing. State-of-the-art resistive switches rely on either conductive filament formation or phase change. These processes suffer from poor reproducibility or high energy consumption, respectively. Herein, we demonstrate the behavior of an alternative synapse design that relies on a deterministic charge-controlled mechanism, modulated electrochemically in solid-state. The device operates by shuffling the smallest cation, the proton, in a three-terminal configuration. It has a channel of active material, WO. A solid proton reservoir layer, PdH, also serves as the gate terminal. A proton conducting solid electrolyte separates the channel and the reservoir. By protonation/deprotonation, we modulate the electronic conductivity of the channel over seven orders of magnitude, obtaining a continuum of resistance states. Proton intercalation increases the electronic conductivity of WO by increasing both the carrier density and mobility. This switching mechanism offers low energy dissipation, good reversibility, and high symmetry in programming.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371700 | PMC |
http://dx.doi.org/10.1038/s41467-020-16866-6 | DOI Listing |
Int J Numer Method Biomed Eng
January 2025
College of Chemistry and Life Science, Beijing University of Technology, Beijing, China.
The accurate non-invasive detection and estimation of central aortic pressure waveforms (CAPW) are crucial for reliable treatments of cardiovascular system diseases. But the accuracy and practicality of current estimation methods need to be improved. Our study combines a meta-learning neural network and a physics-driven method to accurately estimate CAPW based on personalized physiological indicators.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden.
Rapidly detecting hydrogen leaks is critical for the safe large-scale implementation of hydrogen technologies. However, to date, no technically viable sensor solution exists that meets the corresponding response time targets under technically relevant conditions. Here, we demonstrate how a tailored long short-term transformer ensemble model for accelerated sensing (LEMAS) speeds up the response of an optical plasmonic hydrogen sensor by up to a factor of 40 and eliminates its intrinsic pressure dependence in an environment emulating the inert gas encapsulation of large-scale hydrogen installations by accurately predicting its response value to a hydrogen concentration change before it is physically reached by the sensor hardware.
View Article and Find Full Text PDFExp Physiol
January 2025
Strength and Conditioning Research Laboratory, College of Physical Education, University of Brasília, Brasília, Brazil.
This study examined the acute effects of dynamic stretching at different velocities on the neuromuscular system. Fourteen participants underwent four experimental sessions in random order: (1) control (lying at rest with the ankle in a neutral position); (2) slow velocity dynamic stretching (50 beats/min; SLOW); (3) moderate velocity dynamic stretching (70 beats/min; MOD); and (4) fast velocity dynamic stretching (90 beats/min; FAST). The stretching protocols consisted of four sets of 10 repetitions and targeted the plantar flexor muscles of the right ankle.
View Article and Find Full Text PDFInt J Oral Sci
January 2025
Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
Temporomandibular joint osteoarthritis (TMJ-OA) is a common disease often accompanied by pain, seriously affecting physical and mental health of patients. Abnormal innervation at the osteochondral junction has been considered as a predominant origin of arthralgia, while the specific mechanism mediating pain remains unclear. To investigate the underlying mechanism of TMJ-OA pain, an abnormal joint loading model was used to induce TMJ-OA pain.
View Article and Find Full Text PDFBMJ Open
January 2025
Department of Mathematical Modelling and Artificial Intelligence, National Aerospace University Kharkiv Aviation Institute, Kharkiv, Ukraine.
Objective: To identify the early predictors of a self-reported persistence of long COVID syndrome (LCS) at 12 months after hospitalisation and to propose the prognostic model of its development.
Design: A combined cross-sectional and prospective observational study.
Setting: A tertiary care hospital.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!