Physical agents, such as low electric voltage and current, have recently gained attention for antimicrobial treatment due to their bactericidal capability. Although microampere electric current was shown to suppress the growth of bacteria, it remains unclear to what extent the microampere current damaged the bacterial membrane. Here, we investigated the membrane damage and two-way leakage caused by microampere electric current (≤100 μA) with a short exposure time (30 min). Based on MitoTracker staining, propidium iodide staining, filtration assays, and quantitative single-molecule localization microscopy, we observed significant membrane damage, which allowed two-way leakage of ions, small molecules, and proteins. This study paves the way to new development of antimicrobial applications for ultralow electric voltage and current. Although electric voltage and current have been studied for a long time in terms of their ability to suppress the growth of bacteria and to kill bacteria, increasing interest has been aroused more recently due to the prevalence of antibiotic resistance of microbes in past decades. Toward understanding the antimicrobial mechanism of low electric voltage and current, previous studies showed that treating bacteria with milliampere electric currents (≥5 mA) for ≥72 h led to significant damage of the bacterial membrane, which likely resulted in leakage of cellular contents and influx of toxic substances through the damaged membrane. However, it remains unclear to what extent membrane damage and two-way (i.e., inward and outward) leakage are caused by lower (i.e., microampere) electric current in a shorter time frame. In this work, we set out to answer this question. We observed that the membrane damage was caused by microampere electric current in half an hour, which allowed two-way leakage of ions, small molecules, and proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414946 | PMC |
http://dx.doi.org/10.1128/AEM.01015-20 | DOI Listing |
ACS Appl Mater Interfaces
October 2024
Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China.
Thermal resistance at interfaces/contacts stands as a persistent and increasingly critical issue, which hinders ultimate scaling and the performance of electronic devices. Compared to the extensive research on contact electrical resistance, contact thermal resistance and its mitigation strategies have received relatively less attention. Here, we report on an effective, in situ, and energy-efficient approach for enhancing thermal transport through the contact between semiconducting nanoribbons.
View Article and Find Full Text PDFSci Adv
October 2024
Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Solution-processable semiconductors hold promise in enabling applications requiring cost-effective electronics at scale but suffer from low performance limited by defects. We show that ordered defect compound semiconductor CuInSe, which forms regular defect complexes with defect-pair compensation, can simultaneously achieve high performance and solution processability. CuInSe transistors exhibit defect-tolerant, band-like transport supplying an output current above 35 microamperes per micrometer, with a large on/off ratio greater than 10, a small subthreshold swing of 189 ± 21 millivolts per decade, and a high field-effect mobility of 58 ± 10 square centimeters per volt per second, with excellent uniformity and stability, superior to devices built on its less defective parent compound CuInSe, analogous binary compound InSe, and other solution-deposited semiconductors.
View Article and Find Full Text PDFAnal Chem
August 2024
School of Electronic and Information Engineering, Soochow University, Suzhou, 215006, China.
Ion mobility spectrometry (IMS) is a compact and sensitive trace gas analysis instrument that ionizes the sample into ions for detection. Typically, an ion gate is used to cut the continuous ion beam into ion packets for separation and detection. However, commonly used ion gates suffer from complex structures or low ion transmission rates, making the gateless IMS a viable alternative.
View Article and Find Full Text PDFSci Robot
June 2024
Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA.
Electrotactile stimulus is a form of sensory substitution in which an electrical signal is perceived as a mechanical sensation. The electrotactile effect could, in principle, recapitulate a range of tactile experience by selective activation of nerve endings. However, the method has been plagued by inconsistency, galvanic reactions, pain and desensitization, and unwanted stimulation of nontactile nerves.
View Article and Find Full Text PDFSmall
July 2024
Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China.
In-sensor computing has attracted considerable interest as a solution for overcoming the energy efficiency and response time limitations of the traditional von Neumann architecture. Recently, emerging memristors based on transition-metal oxides (TMOs) have attracted attention as promising candidates for in-memory computing owing to their tunable conductance, high speed, and low operational energy. However, the poor photoresponse of TMOs presents challenges for integrating sensing and processing units into a single device.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!