Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Complex behavioral assessment is necessary to comprehensively assess manipulations in rodent models for neuropsychiatric disorders. Operant behavioral paradigms provide rich datasets and allow for the careful analysis of behavioral phenotypes. However, one major limitation in these studies is the expense and work-load that are required using traditional methods. The equipment for commercial operant boxes can be prohibitively expensive, and the daily experimenter effort and mouse costs required for these studies is extensive. Rodents are generally trained on task-specific paradigms for months, tested every day for 5-7 d/week. Additionally, appetitive paradigms usually require food restriction and are also commonly run in the non-active light phase of the rodent circadian rhythm. These limitations make operant behavioral testing especially difficult during adolescence, a time period of interest with regards to the development of adult-like phenotypes and a high-risk period for the development of neuropsychiatric disorders, including those which involve impulsive behavior. In order to address these issues, we developed an automated, inexpensive, open-source method which allows the implementation of most standard operant paradigms in the homecage of rodents in shorter time frames without food restriction, and with much less experimenter effort. All construction and code for the do-it-yourself Nautiyal Automated Modular Instrumental Conditioning (DIY-NAMIC) system are open source. We demonstrate their utility here by measuring impulsive behavior in a pharmacology experiment, as well as in adolescent mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7358334 | PMC |
http://dx.doi.org/10.1523/ENEURO.0160-20.2020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!