A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bilateral cervical contusion spinal cord injury: A mouse model to evaluate sensorimotor function. | LitMetric

Bilateral cervical contusion spinal cord injury: A mouse model to evaluate sensorimotor function.

Exp Neurol

Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA; Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA. Electronic address:

Published: September 2020

Spinal cord injury is a severe condition, resulting in specific neurological symptoms depending on the level of damage. Approximately 60% of spinal cord injuries affect the cervical spinal cord, resulting in complete or incomplete tetraplegia and higher mortality rates than injuries of the thoracic or lumbar region. Although cervical spinal cord injuries frequently occur in humans, there are few clinically relevant models of cervical spinal cord injury. Animal models are critical for examining the cellular and molecular manifestations of human cervical spinal cord injury, which is not feasible in the clinical setting, and to develop therapeutic strategies. There is a limited number of studies using cervical, bilateral contusion SCI and providing a behavioral assessment of motor and sensory functions, which is partly due to the high mortality rate and severe impairment observed in severe cervical SCI models. The goal of this study was to develop a mouse model of cervical contusion injury with moderate severity, resulting in an apparent deficit in front and hindlimb function but still allowing for self-care of the animals. In particular, we aimed to characterize a mouse cervical injury model to be able to use genetic models and a wide range of viral techniques to carry out highly mechanistic studies into the cellular and molecular mechanisms of cervical spinal cord injury. After inducing a bilateral, cervical contusion injury at level C5, we followed the recovery of injured and sham-uninjured animals for eight weeks post-surgery. Hindlimb and forelimb motor functions were significantly impaired immediately after injury, and all mice demonstrated partial improvement over time that remained well below that of uninjured control mice. Mice also displayed a significant loss in their sensory function throughout the testing period. This loss of sensory and motor function manifested as a reduced ability to perform skilled motor tasks in all of the injured mice. Here, we describe a new mouse model of moderate bilateral cervical spinal cord injury that does not lead to mortality and provides a comprehensive assessment of histological and behavioral assessments. This model will be useful in enhancing our mechanistic understanding of cervical spinal cord injury and in the development of treatments targeted at promoting neuroprotection, neuroplasticity, and functional recovery after cervical SCI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2020.113381DOI Listing

Publication Analysis

Top Keywords

spinal cord
40
cord injury
28
cervical spinal
28
cervical
13
bilateral cervical
12
cervical contusion
12
mouse model
12
injury
11
spinal
10
cord
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!