Objective: To synthesize a zirconia toughened alumina (ZTA) composite with 70% alumina reinforced by 30% zirconia for dental applications and to characterize its microstructure and optical properties for comparison with the isolated counterpart materials and a first-generation 3Y-TZP.

Methods: Disc-shaped specimens were divided in four groups (n = 70/material): (1) 3YSB-E (first generation 3Y-TZP), (2) Zpex (second generation 3Y-TZP), (3) alumina, and (4) ZTA-Zpex 70/30. After synthesis, ceramic powders were pressed, and green-body samples sintered following a predetermined protocol. Specimens were polished to obtain a mirror surface finish. Apparent density was measured by Archimedes principle. X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to characterize the crystalline content and microstructure. Reflectance tests were performed to determine the contrast-ratio (CR) and translucency-parameter (TP). Mechanical properties were assessed by biaxial flexural strength (BFS) test. All analyses were conducted before and after artificial aging (20 h, 134 °C, 2.2 bar). Optical parameters were evaluated through repeated-measures analysis of variance and Tukey tests (p < 0.05). BFS data were analyzed using Weibull statistics (95% CI).

Results: High density values (95-99%) were found for all ceramic materials and SEM images exhibited a dense microstructure. While XRD patterns revealed the preservation of crystalline content in the ZTA composite, an increase in the monoclinic peak was observed for pure zirconias after aging. Significantly higher CR and lower TP values were observed for the ZTA composite, followed by alumina, 3YSB-E, and Zpex. The highest characteristic stress was recorded for 3YSB-E, followed by intermediate values between ZTA and Zpex, and the lowest for alumina. Aging affected the optical and mechanical properties of both zirconias, while remained stable for ZTA composite and alumina.

Significance: The synthesis of experimental 70-30% ZTA composite was successful and its relevance for dental applications relies on its higher masking ability, aging resistance, and strength similar to zirconia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2020.05.011DOI Listing

Publication Analysis

Top Keywords

zta composite
24
dental applications
12
optical mechanical
8
generation 3y-tzp
8
crystalline content
8
mechanical properties
8
zta
7
composite
6
aging
5
alumina
5

Similar Publications

The present work aims to develop a production method of pre-sintered zirconia-toughened-alumina (ZTA) composite blocks for machining in a computer-aided design and computer-aided manufacturing (CAD-CAM) system. The ZTA composite comprised of 80% AlO and 20% ZrO was synthesized, uniaxially and isostatically pressed to generate machinable CAD-CAM blocks. Fourteen green-body blocks were prepared and pre-sintered at 1000 °C.

View Article and Find Full Text PDF

Zirconia Toughened Alumina Ceramics via Forming Intragranular Structure.

Materials (Basel)

March 2024

Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.

The distribution of second phase particles in the microstructure of composite ceramics affects the mechanical properties, and the intragranular structures often result in better properties compared to the intergranular structures. However, it is difficult to obtain composite ceramics with intragranular structure by conventional route. To produce composite ceramics with an intragranular structure in a simpler route.

View Article and Find Full Text PDF

ZrO-toughened AlO (ZTA) ceramic composites with a porosity gradient and with improved mechanical properties have a wide range of possible applications. We fabricated nanofibrous and nanogranular Y-ZTA and Ce-ZTA composites with a gradient microstructure by creating a temperature gradient during SPS sintering, with the use of asymmetric graphite tool arrangement (ASY). In this study, we examined the morphology effect of the starting materials on the sintering process and on the final microstructure, as well as the mechanical properties of the composites.

View Article and Find Full Text PDF

Fretting corrosion behavior of Ti6Al4V alloy against zirconia-toughened alumina ceramic in simulated body fluid.

J Mech Behav Biomed Mater

June 2023

School of Mechanical Engineering, Southwest Jiaotong University, Sichuan, Chengdu, 610031, China; School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK.

The fretting corrosion at the head-neck interface of artificial hip joints is an important reason for the failure of prostheses. The Ti6Al4V alloy-zirconia-toughened alumina (ZTA) ceramic combination has been widely used to make the head and neck of artificial hip joints. In this study, its fretting corrosion behavior in simulated body fluid was studied by electrochemical monitoring, surface morphology characterization, and chemical composition analysis.

View Article and Find Full Text PDF

This paper investigated a synthesis process for highly porous AlO, Y-ZTA, and Ce-ZTA ceramic nanocomposites with gradient microstructure and improved mechanical properties. Ceramic nanofibres were synthesized as the starting material. The gradient microstructure was developed during spark plasma sintering using an asymmetric graphite arrangement that generated significant temperature differences (80-100 °C) between the opposite sides of the samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!