The trabecular meshwork: Structure, function and clinical implications. A review of the literature.

J Fr Ophtalmol

Ophthalmology Department, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, IHU FOReSIGHT, 28, rue de Charenton, 75012 Paris, France; Ophthalmology Department, hôpital Ambroise-Paré, IHU FOReSIGHT, AP-HP, 9, avenue Charles-De-Gaulle, 92100 Boulogne-Billancourt, France; Université de Versailles Saint-Quentin-en-Yvelines, 78000 Versailles, France; Inserm, CNRS, Institut de la Vision, Sorbonne University, 17, rue Moreau, 75012 Paris, France.

Published: September 2020

Glaucoma is a blinding optic neuropathy, the main risk factor for which is increased intraocular pressure (IOP). The trabecular meshwork, located within the iridocorneal angle, is the main pathway for drainage of aqueous humor (AH) out of the eye, and its dysfunction is responsible for the IOP elevation. The trabecular meshwork is a complex, fenestrated, three-dimensional structure composed of trabecular meshwork cells (TMC) interdigitated into a multilayered organization within the extracellular matrix (ECM). The purpose of this literature review is to provide an overview of current understanding of the trabecular meshwork and its pathophysiology in glaucoma. Thus, we will present the main anatomical and cellular bases for the regulation of aqueous humor outflow resistance, the pathophysiological mechanisms involved in trabecular dysfunction in the various types of glaucoma, as well as current and future therapeutic strategies targeting the trabecular meshwork.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jfo.2020.05.002DOI Listing

Publication Analysis

Top Keywords

trabecular meshwork
24
aqueous humor
8
trabecular
7
meshwork
5
meshwork structure
4
structure function
4
function clinical
4
clinical implications
4
implications review
4
review literature
4

Similar Publications

Pseudoexfoliation syndrome (PXS) is an age-related fibrillopathy where fibrillar exfoliation material accumulates and deposits in ocular and extra-ocular tissue. Within the eye, this substance accumulates on the ocular surface and in the anterior segment of the eye, impacting ocular structures such as the conjunctiva, Tenon's capsule, sclera, cornea, iris, ciliary body, trabecular meshwork, and lens. This review aims to collate the current literature on how each anatomical part of the eye is affected by PXS, with a strong focus on molecular changes.

View Article and Find Full Text PDF

Corneal Stromal Stem Cell-Derived Extracellular Vesicles Attenuate ANGPTL7 Expression in the Human Trabecular Meshwork.

Transl Vis Sci Technol

January 2025

Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

Purpose: Regulating intraocular pressure (IOP), mainly via the trabecular meshwork (TM), is critical in developing glaucoma. Whereas current treatments aim to lower IOP, directly targeting the dysfunctional TM tissue for therapeutic intervention has proven challenging. In our study, we utilized Dexamethasone (Dex)-treated TM cells as a model to investigate how extracellular vesicles (EVs) from immortalized corneal stromal stem cells (imCSSCs) could influence ANGPTL7 and MYOC genes expression within TM cells.

View Article and Find Full Text PDF

Correction for 'Self-generating electricity system driven by aqueous humor flow and trabecular meshwork contraction motion activated BKCa for glaucoma intraocular pressure treatment' by Ruiqi Wang , , 2025, https://doi.org/10.1039/D4MH01004C.

View Article and Find Full Text PDF

Circadian rhythm of intraocular pressure.

J Physiol Sci

January 2025

Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-Ku, 819-0395, Fukuoka, Japan. Electronic address:

Intraocular pressure (IOP) plays a crucial role in glaucoma development, involving the dynamics of aqueous humor (AH). AH flows in from the ciliary body and exits through the trabecular meshwork (TM). IOP follows a circadian rhythm synchronized with the suprachiasmatic nucleus (SCN), the circadian pacemaker.

View Article and Find Full Text PDF

Introduction: Cataract surgery has been reported to have a reducing effect on intraocular pressure (IOP) in glaucomatous and non-glaucomatous eyes. This effect seems to be more noticeable in eyes with narrow angles (NAs) than in eyes with open angles (OAs). Decrease in IOP may be a result of the increase in anterior chamber angle (ACA) and Schlemm canal (SC) after cataract surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!