Background: Incorporating patient preference (PP) information into decision-making has become increasingly important to many stakeholders. However, there is little guidance on which patient preference assessment methods, including preference exploration (qualitative) and elicitation (quantitative) methods, are most suitable for decision-making at different stages in the medical product lifecycle (MPLC). This study aimed to use an empirical approach to assess which attributes of PP assessment methods are most important, and to identify which methods are most suitable, for decision-makers' needs during different stages in the MPLC.
Methods: A four-step cumulative approach was taken: 1) Identify important criteria to appraise methods through a Q-methodology exercise, 2) Determine numerical weights to ascertain the relative importance of each criterion through an analytical hierarchy process, 3) Assess the performance of 33 PP methods by applying these weights, consulting international health preference research experts and review of literature, and 4) Compare and rank the methods within taxonomy groups reflecting their similar techniques to identify the most promising methods.
Results: The Q-methodology exercise was completed by 54 stakeholders with PP study experience, and the analytical hierarchy process was completed by 85 stakeholders with PP study experience. Additionally, 17 health preference research experts were consulted to assess the performance of the PP methods. Thirteen promising preference exploration and elicitation methods were identified as likely to meet decision-makers' needs. Additionally, eight other methods that decision-makers might consider were identified, although they appeared appropriate only for some stages of the MPLC.
Conclusions: This transparent, weighted approach to the comparison of methods supports decision-makers and researchers in selecting PP methods most appropriate for a given application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304129 | PMC |
http://dx.doi.org/10.1186/s12911-020-01142-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!