Background: Liver cancer is one of the most common cancers in the world. The primary aim of this research was to discover the correlation between single nucleotide polymorphisms (SNPs) of the MIR155HG and liver cancer risk.
Methods: The selected SNPs in MIR155HG were genotyped utilizing the Agena MassARRAY platform. We evaluated the correlation between MIR155HG polymorphisms and Liver cancer by genetic model analysis, stratification analysis and haplotype analysis. Relative risk of Liver cancer was shown based on odds ratios (ORs) and 95% confidence intervals (95% CIs).
Results: Our results uncovered that rs12482371 and rs1893650 in the MIR155HG were associated with protection against Liver cancer. And the rs928883 was related to increase risk of Liver cancer. Furthermore, apart from rs77218221, other selected SNPs formed two LD blocks, and haplotype "GATAG" in block 2 elevated individual liver cancer risk.
Conclusions: MIR155HG gene polymorphism may be correlated to Liver cancer susceptibility in Han Chinese population, particularly in males and aged ≤55 years.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304092 | PMC |
http://dx.doi.org/10.1186/s12881-020-01064-4 | DOI Listing |
Lung Cancer
January 2025
Dept. of Medical Oncology, Princess Margaret Cancer Center, Toronto, ON, Canada.
Background: Manual extraction of real-world clinical data for research can be time-consuming and prone to error. We assessed the feasibility of using natural language processing (NLP), an AI technique, to automate data extraction for patients with advanced lung cancer (aLC). We assessed the external validity of our NLP-extracted data by comparing our findings to those reported in the literature.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
Quantification of intrahepatic covalently closed circular DNA (cccDNA) is a key for evaluating an elimination of hepatitis B virus (HBV) in infected patients. However, quantifying cccDNA requires invasive methods such as a liver biopsy, which makes it impractical to access the dynamics of cccDNA in patients. Although HBV RNA and HBV core-related antigens (HBcrAg) have been proposed as surrogate markers for evaluating cccDNA activity, they do not necessarily estimate the amount of cccDNA.
View Article and Find Full Text PDFScience
January 2025
Gastroenterology Division, Massachusetts General Hospital, Boston, MA, USA.
Bile acids differentially affect immune cell responses to liver cancer.
View Article and Find Full Text PDFScience
January 2025
NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA.
The metabolic landscape of cancer greatly influences antitumor immunity, yet it remains unclear how organ-specific metabolites in the tumor microenvironment influence immunosurveillance. We found that accumulation of primary conjugated and secondary bile acids (BAs) are metabolic features of human hepatocellular carcinoma and experimental liver cancer models. Inhibiting conjugated BA synthesis in hepatocytes through deletion of the BA-conjugating enzyme bile acid-CoA:amino acid -acyltransferase (BAAT) enhanced tumor-specific T cell responses, reduced tumor growth, and sensitized tumors to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy.
View Article and Find Full Text PDFAnticancer Drugs
January 2025
School of Clinical Medicine, Guizhou Medical University, Guiyang City, Guizhou, China.
Eugenol, a phenolic natural product with diverse pharmacological activities, remains unexplored in liver cancer. Using network pharmacology, we investigated eugenol's therapeutic mechanisms in liver cancer. We obtained eugenol's molecular structure from PubChem and screened its targets using similarity ensemble approach in Swiss Target Predictiondatabases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!