Pharmaceutical and personal care products (PPCPs) have been the focus of increasing concern in recent decades due to their ubiquity in the environment and potential risks. Out-of-date PPCPs are usually discharged into municipal solid wastes (MSWs), enter the leachates in MSW landfills, and have serious adverse effects on the surrounding water environment. However, the occurrence and removal of PPCPs from landfill leachates have rarely been examined to date. This lack of knowledge makes the landfill an underestimated source of PPCPs in the environment. In this review, we collected the relevant publications of PPCPs in landfill leachates, systematically summarized the occurrence of PPCPs in landfill leachates globally, evaluated the removal performances for various PPCPs by different types of on-site full-scale leachate treatment processes, and assessed the impacts of landfill leachates on PPCPs in the adjacent groundwater. In particular, influencing factors for PPCPs in landfill leachates, including the physicochemical properties of PPCPs, climate conditions, and characteristics of landfill sites (i.e., landfill ages) as well as sociological factors (i.e., economic development), were extensively discussed to understand their occurrence patterns. Future perspectives were also proposed in light of the identified knowledge gaps. To the best of our knowledge, this is the first review regarding the occurrence and removal of PPCPs from landfill leachates worldwide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.0c00565 | DOI Listing |
Environ Sci Technol
January 2025
School of Environmental Science and Engineering, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, China.
In landfill leachates containing complex dissolved organic matter (DOM), the link between individual DOM constituents and their inherent oxidizability is unclear. Here, we resolved the molecular signatures of DOM oxidized by OH/O using FT-ICR MS, thereby elucidating their oxidizability and resistance in concentrated leachates. The comprehensive gradual fragmentation of complex leachate DOM was then revealed through a modified machine-learning framework based on 43 key pathways during ozonation.
View Article and Find Full Text PDFWaste Manag
January 2025
Delft University of Technology, Faculty of Civil and Geosciences Engineering, Stevinweg 1, 2628 CN Delft, the Netherlands.
The ratio of nitrogen (N) to argon (Ar) in landfill gas was compared to the atmospheric gas ratio to quantify the balance between N generating (anaerobic ammonium oxidation, denitrification) and N consuming (nitrogen fixation) processes on three landfills undergoing in-situ stabilization. In the aerated landfills, as much as 22% of the extracted N could be explained by net denitrification, with coexisting aerobic and anaerobic domains fostering nitrification-dependent denitrification. Nitrogen fixation was also occasionally observed.
View Article and Find Full Text PDFMicroorganisms
November 2024
School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, MC, Italy.
Urbanization growth has intensified the challenge of managing and treating increasing amounts of municipal solid waste (MSW). Landfills are commonly utilized for MSW disposal because of their low construction and operation costs. However, this practice produces huge volumes of landfill leachate, a highly polluting liquid rich in ammoniacal nitrogen (NH-N), organic compounds, and various heavy metals, making it difficult to treat in conventional municipal wastewater treatment plants (WWTPs).
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India. Electronic address:
The accumulation of disposable face masks (DFMs) has become a significant threat to the environment due to extensive use during the COVID-19 pandemic. In this research, we investigated the degradation of DFMs after their disposal in landfills. We replicated the potential degradation process of DFMs, including exposure to sunlight before subjecting them to synthetic landfill leachate (LL).
View Article and Find Full Text PDFChemosphere
January 2025
Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India. Electronic address:
The establishment of site-specific target limits (SSTLs) for old municipal solid waste (MSW) dumpsites is essential for defining remediation goals in a scientifically rigorous manner. However, a standardized framework for achieving this is currently lacking. This study proposes a comprehensive framework that integrates high-resolution site characterization (HRSC) tools, targeted sampling, and contaminant transport modeling to derive SSTLs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!