In the present density functional theory (DFT) research, nine different molecules, each with different combinations of A (triel) and E (divalent metal) elements, were reacted to effect methane C-H activation. The compounds modeled herein incorporated the triels A = B, Al, or Ga and the divalent metals E = Be, Mg, or Zn. The results show that changes in the divalent metal have a much bigger impact on the thermodynamics and methane activation barriers than changes in the triels. The activating molecules that contained beryllium were most likely to have the potential for activating methane, as their free energies of reaction and free energy barriers were close to reasonable experimental values (i.e., ΔG close to thermoneutral, ΔG ~30 kcal/mol). In contrast, the molecules that contained larger elements such as Zn and Ga had much higher ΔG. The addition of various substituents to the A-E complexes did not seem to affect thermodynamics but had some effect on the kinetics when substituted closer to the active site.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355694 | PMC |
http://dx.doi.org/10.3390/molecules25122794 | DOI Listing |
Chem Sci
January 2025
Department of Chemistry, Indian Institute of Technology Hauz Khas Delhi New Delhi 110016 India
The direct transformation of methane into C oxygenates such as acetic acid selectively using molecular oxygen (O) is a significant challenge due to the chemical inertness of methane, the difficulty of methane C-H bond activation/C-C bond coupling and the thermodynamically favored over-oxidation. In this study, we have successfully developed a porous aluminium metal-organic framework (MOF)-supported single-site mono-copper(ii) hydroxyl catalyst [MIL-53(Al)-Cu(OH)], which is efficient in directly oxidizing methane to acetic acid in water at 175 °C with a remarkable selectivity using only O. This heterogeneous catalyst achieved an exceptional acetic acid productivity of 11 796 mmol mol h in 9.
View Article and Find Full Text PDFChemistry
January 2025
Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk, 630090, Russia.
Cu-modified zeolites provide methane conversion to methanol with high selectivity under mild conditions. The activity of different Cu-sites for methane transformation is still under discussion. Herein, ZSM-5 zeolite has been loaded with Cu cations (1.
View Article and Find Full Text PDFSci Technol Adv Mater
December 2024
Department of Life, Environment and Applied Chemistry, Fukuoka Institute of Technology, Fukuoka, Japan.
Alkaline-earth metal oxides with the rocksalt structure, which are simple ionic solids, have attracted attention in attempts to gain fundamental insights into the properties of metal oxides. The surfaces of alkaline-earth metal oxides are considered promising catalysts for the oxidative coupling of methane (OCM); however, the development of such catalysts remains a central research topic. In this paper, we performed first-principles calculations to investigate the ability of four alkaline-earth metal oxides (MgO, CaO, SrO, and BaO) to catalyze the OCM.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China.
The integration of ligand-to-metal charge transfer (LMCT) catalytic paradigms with radical intermediates has transformed the selective functionalization of inert C-H bonds, facilitating the use of nonprecious metal catalysts in demanding transformations. Notably, aerobic C-H carbonylation of methane to acetic acid remains formidable due to the rapid oxidation of methyl radicals, producing undesired C1 oxygenates. We present an iron terpyridine catalyst utilizing LMCT to achieve exceptional C2/C1 selectivity through synergistic photoexcitation, methyl radical generation, and carbonylation.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
The conversion of methane and carbon dioxide to form C products is of great interest but presents a long-standing grand challenge due to the significant obstacle of activating the inert C-H and C═O bonds as well as forming the C-C bonds. Herein, the consecutive C-C coupling of CH and CO was realized by using heteronuclear metal cations CuTa, and the desorption of HC═C═O molecules was evidenced by state-of-the-art mass spectrometry. The CuTa reaction system is significantly different from the homonuclear metal systems of Cu and Ta.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!