Multi-Mode Love-Wave SAW Magnetic-Field Sensors.

Sensors (Basel)

Integrated Systems and Photonics, Institute of Electrical Engineering and Information Technology, Kiel University, Kaiserstraße 2, 24143 Kiel, Germany.

Published: June 2020

A surface-acoustic-wave (SAW) magnetic-field sensor utilizing fundamental, first- and second-order Love-wave modes is investigated. A 4.5   μ m SiO guiding layer on an ST-cut quartz substrate is coated with a 200 n m (FeCo)SiB magnetostrictive layer in a delay-line configuration. Love-waves are excited and detected by two interdigital transducers (IDT). The delta-E effect in the magnetostrictive layer causes a phase change with applied magnetic field. A sensitivity of 1250 ° / m T is measured for the fundamental Love mode at 263 M Hz . For the first-order Love mode a value of 45 ° / m T is obtained at 352 M Hz . This result is compared to finite-element-method (FEM) simulations using one-dimensional (1D) and two-and-a-half-dimensional (2.5 D) models. The FEM simulations confirm the large drop in sensitivity as the first-order mode is close to cut-off. For multi-mode operation, we identify as a suitable geometry a guiding layer to wavelength ratio of h GL / λ ≈ 1.5 for an IDT pitch of p = 12   μ m . For this layer configuration, the first three modes are sufficiently far away from cut-off and show good sensitivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7348954PMC
http://dx.doi.org/10.3390/s20123421DOI Listing

Publication Analysis

Top Keywords

guiding layer
8
magnetostrictive layer
8
love mode
8
fem simulations
8
layer
5
multi-mode love-wave
4
love-wave magnetic-field
4
magnetic-field sensors
4
sensors surface-acoustic-wave
4
surface-acoustic-wave magnetic-field
4

Similar Publications

Neurodynamic observations indicate that the cerebral cortex evolved by self-organizing into functional networks, These networks, or distributed clusters of regions, display various degrees of attention maps based on input. Traditionally, the study of network self-organization relies predominantly on static data, overlooking temporal information in dynamic neuromorphic data. This paper proposes Temporal Self-Organizing (TSO) method for neuromorphic data processing using a spiking neural network.

View Article and Find Full Text PDF

Background: It is very well known that the supraclavicular nerve (SCN) which occupies the inferior part of the superficial cervical plexus basically originates from the ventral rami of C2-C4, then travels caudally into the investing layer of the deep cervical fascia (IL-DCF) alternatively termed the "prevertebral fascia."

Methods: This cadaveric study (a total of 6 soft-embalmed cadavers and bilateral dissections, i.e.

View Article and Find Full Text PDF

Amid rapid urbanization, land use shifts in cities globally have profound effects on ecosystems and biodiversity. Birds, as a crucial component of urban biodiversity, are highly sensitive to environmental changes and often serve as indicator species for biodiversity. This study, using Shenzhen as a case study, integrates machine learning techniques with spatial statistical methods.

View Article and Find Full Text PDF

Multifunctional porphyrinic metal-organic framework-based nanoplatform regulating reactive oxygen species achieves efficient imaging-guided cascaded nanocatalytic therapy.

J Colloid Interface Sci

January 2025

Department of Chemistry, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, 100084 Beijing, China. Electronic address:

The integration of reactive oxygen species (ROS) related photodynamic therapy (PDT) with the strategy of reshaping the tumor microenvironment (TME) has emerged as a potential approach for nanodiagnostic and therapeutic interventions. However, the therapeutic efficacy based on ROS treatments may be hindered by intracellular antioxidants such as glutathione (GSH) and tumor hypoxia. To address these challenges, a nanoplatform based on GSH-responsive multifunctional porphyrinic metal-organic framework (PCN-224@Au@MnO@HA, PAMH) was proposed.

View Article and Find Full Text PDF

Transferring knowledge learned from standard GelSight sensors to other visuotactile sensors is appealing for reducing data collection and annotation. However, such cross-sensor transfer is challenging due to the differences between sensors in internal light sources, imaging effects, and elastomer properties. By understanding the data collected from each type of visuotactile sensors as domains, we propose a few-sample-driven style-to-content unsupervised domain adaptation method to reduce cross-sensor domain gaps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!