AI Article Synopsis

  • We propose a cost-effective, passive method for monitoring long-term light-absorbing carbon pollution indoors, using digital images to estimate changes in surface reflectance.
  • Preliminary lab tests and indoor environmental assessments across 20 locations showed strong reproducibility of results (0.99) and effective detection limits for monitoring over several months in homes using solid fuels.
  • Although the method demonstrates high precision, further validation with reliable measurements is necessary to confirm its overall accuracy.

Article Abstract

We propose a low-cost passive method for monitoring long-term average levels of light-absorbing carbon air pollution in polluted indoor environments. Building on prior work, the method here estimates the change in reflectance of a passively exposed surface through analysis of digital images. To determine reproducibility and limits of detection, we tested low-cost passive samplers with exposure to kerosene smoke in the laboratory and to environmental pollution in 20 indoor locations. Preliminary results suggest robust reproducibility ( = 0.99) and limits of detection appropriate for longer-term (~1-3 months) monitoring in households that use solid fuels. The results here suggest high precision; further testing involving "gold standard" measurements is needed to investigate accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7348734PMC
http://dx.doi.org/10.3390/s20123417DOI Listing

Publication Analysis

Top Keywords

low-cost passive
12
passive method
8
long-term average
8
average levels
8
levels light-absorbing
8
light-absorbing carbon
8
carbon air
8
air pollution
8
pollution polluted
8
polluted indoor
8

Similar Publications

This work describes fully integrated multifolding electrochemical paper-based devices (ePADs) for enhanced multiplexed voltammetric determination of heavy metals (Zn(II), Cd(II), and Pb(II)) using tunable passive preconcentration. The paper devices integrate five circular sample preconcentration layers and a 3-electrode electrochemical cell. The hydrophobic barriers of the devices are drawn by pen-plotting with hydrophobic ink, while the electrodes are deposited by screen-printing.

View Article and Find Full Text PDF

A highly sensitive sulfur dioxide (SO) photoacoustic gas sensor was developed for the sulfur hexafluoride (SF) decomposition detection in electric power systems by using a novel 266 nm low-cost high-power solid-state pulse laser and a high -factor differential photoacoustic cell. The ultraviolet (UV) pulse laser is based on a passive -switching technology with a high output power of 28 mW. The photoacoustic signal was normalized to the laser power to solve the fluctuation of the photoacoustic signal due to the power instability of the UV laser.

View Article and Find Full Text PDF

The present study aimed to explore an ideal delivery system for triptolide (TPL) by utilizing the thin-film hydration method to prepare drug-loaded, folate-modified mixed pluronic micelles (FA-F-127/F-68-TPL). Scanning electron microscopy and atomic force microscopy showed that the drug-loaded micelles had a spherical shape with a small particle size, with an average of 30.7 nm.

View Article and Find Full Text PDF

Thermal insulating cellulose/wood foam for passive radiant cooling.

Int J Biol Macromol

January 2025

School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China. Electronic address:

Passive cooling permits thermal management of near-zero energy consumption and low CO emissions. Herein, cellulose/wood chip composite foam (CWF) with anisotropic porous structure was prepared via freeze-casting strategy. The CWF displayed an average reflectance of up to 95.

View Article and Find Full Text PDF

Robust fluorinated cellulose composite aerogels incorporating radiative cooling and thermal insulation for regionally adaptable building thermal management.

Int J Biol Macromol

December 2024

Jiangsu Optoelectronic Functional Materials Engineering Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. Electronic address:

Passive radiative cooling (PRC) is an emerging sustainable technology that plays a key role for achieving the goal of carbon neutrality. However, several challenges remain for PRC materials in their practical application in building thermal management, including overcooling problems and unsatisfactory cooling efficiency caused by solar absorption and parasitic heat gains. In this work, fluorinated cellulose-based composite aerogels (FCCA) integrating thermal insulation and PRC were developed by a facile manufacturing strategy that combined phase separation and freeze-drying.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!