Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The high-speed dynamics of nodes and rapid change of network topology in vehicular ad hoc networks (VANETs) pose significant challenges for the design of routing protocols. Because of the unpredictability of VANETs, selecting the appropriate next-hop relay node, which is related to the performance of the routing protocol, is a difficult task. As an effective solution for VANETs, geographic routing has received extensive attention in recent years. The Greedy Perimeter Coordinator Routing (GPCR) protocol is a widely adopted position-based routing protocol. In this paper, to improve the performance in sparse networks, the local optimum, and the routing loop in the GPCR protocol, the Weighted-GPCR (W-GPCR) protocol is proposed. Firstly, the relationship between vehicle node routing and other parameters, such as the Euclidean distance between node pairs, driving direction, and density, is analyzed. Secondly, the composite parameter weighted model is established and the calculation method is designed for the existing routing problems; the weighted parameter ratio is selected adaptively in different scenarios, so as to obtain the optimal next-hop relay node. In order to verify the performance of the W-GPCR method, the proposed method is compared with existing methods, such as the traditional Geographic Perimeter Stateless Routing (GPSR) protocol and GPCR. Results show that this method is superior in terms of the package delivery ratio, end-to-end delay, and average hop count.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7348947 | PMC |
http://dx.doi.org/10.3390/s20123406 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!