Unlike seed plants, ferns leaves are considered to be structures with delayed determinacy, with a leaf apical meristem similar to the shoot apical meristems. To better understand the meristematic organization during leaf development and determinacy control, we analyzed the cell divisions and expression of genes in , a fern that produces larger leaves with more pinnae in its climbing form than in its terrestrial form. We performed anatomical, in situ hybridization, and qRT-PCR experiments with (cell division marker) and genes. We found that genes are expressed in shoot apical meristems, leaf apical meristems, and pinnae primordia. During early development, cell divisions occur in the most distal regions of the analyzed structures, including pinnae, and are not restricted to apical cells. Fern leaves and pinnae bear apical meristems that may partially act as indeterminate shoots, supporting the hypothesis of homology between shoots and leaves. Class expression is correlated with indeterminacy in the apex and leaf of ferns, suggesting a conserved function for these genes in euphyllophytes with compound leaves.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352642 | PMC |
http://dx.doi.org/10.3390/ijms21124295 | DOI Listing |
Plants (Basel)
December 2024
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
Quant Plant Biol
December 2024
Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
Trees, living for centuries, accumulate somatic mutations in their growing trunks and branches, causing genetic divergence within a single tree. Stem cell lineages in a shoot apical meristem accumulate mutations independently and diverge from each other. In plants, somatic mutations can alter the genetic composition of reproductive organs and gametes, impacting future generations.
View Article and Find Full Text PDFTransgenic Res
January 2025
Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India.
This study aimed to develop a reliable and efficient genetic transformation method for the ornamental Indian Lotus (Nelumbo nucifera Gaertn.) using the sonication-assisted Rhizobium radiobacter-mediated transformation technique. To conduct the transformation, shoot apical meristem explants were infected with Rhizobium radiobacter (synonym Agrobacterium tumefaciens) strain LBA 4404 containing a binary vector pBI121 that harbours the GUS reporter gene (uidA) and kanamycin resistance gene nptII for plant selection.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Wulanchabu Academy of Agricultural and Forestry Sciences, Wulanchabu 012000, China.
The Solanaceae family, which includes vital crops such as tomatoes, peppers, eggplants, and potatoes, is increasingly impacted by drought due to climate change. Recent research has concentrated on unraveling the molecular mechanisms behind drought resistance in these crops, with a focus on abscisic acid (ABA) signaling pathways, transcription factors (TFs) like MYB (Myeloblastosis), WRKY (WRKY DNA-binding protein), and NAC (NAM, ATAF1/2, and CUC2- NAM: No Apical Meristem, ATAF1/2, and CUC2: Cup-shaped Cotyledon), and the omics approaches. Moreover, transcriptome sequencing (RNA-seq) has been instrumental in identifying differentially expressed genes (DEGs) crucial for drought adaptation.
View Article and Find Full Text PDFBiology (Basel)
December 2024
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Roots are fundamental to the growth, development, and survival of plants. Beyond anchoring the plant, roots absorb water and nutrients, supporting the plant's ability to grow and function normally. Root systems, originating from the apical meristem, exhibit significant diversity depending on the plant species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!