Volumetric Change Detection in Bedrock Coastal Cliffs Using Terrestrial Laser Scanning and UAS-Based SfM.

Sensors (Basel)

Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Sapporo 062-8555, Japan.

Published: June 2020

Three-dimensional (3D) morphological changes in rocky coasts need to be precisely measured for protecting coastal areas and evaluating the associated sediment dynamics, although volumetric measurements of bedrock erosion in rocky coasts have been limited due to the lack of appropriate measurement methods. Here we carried out repeat surveys of the 3D measurements of a small coastal island using terrestrial laser scanning (TLS) and structure-from-motion (SfM) photogrammetry with an unmanned aerial system (UAS) for 5 years. The UAS-SfM approach measures the entire shape of the island, whereas the TLS measurement enables to obtain more accurate morphological data at a scale of centimeters on the land side. The multitemporal TLS-derived data were first aligned in timeline by the iterative closest point (ICP) method and they were used as positionally correct references. The UAS-SfM data were then aligned to each of the TLS-derived data by ICP to improve its positional accuracy. The changed areas for each period was then extracted from the aligned UAS-derived point clouds and were converted to 3D mesh polygons, enabling a differential volume estimate (DVE). The DVE for each period was revealed to be from 3.1 to 77.2 m/month. These changes are rapid enough to force the coastal bedrock island to disappear in 30 years. The temporal variations in the DVE is roughly associated with those in the frequency of high tidal waves.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349034PMC
http://dx.doi.org/10.3390/s20123403DOI Listing

Publication Analysis

Top Keywords

terrestrial laser
8
laser scanning
8
rocky coasts
8
tls-derived data
8
data aligned
8
volumetric change
4
change detection
4
detection bedrock
4
coastal
4
bedrock coastal
4

Similar Publications

Terrestrial laser scanners (TLS) are portable dimensional measurement instruments used to obtain 3D point clouds of objects in a scene. While TLSs do not require the use of cooperative targets, they are sometimes placed in a scene to fuse or compare data from different instruments or data from the same instrument but from different positions. A contrast target is an example of such a target; it consists of alternating black/white squares that can be printed using a laser printer.

View Article and Find Full Text PDF

Assessing microplastic and nanoplastic contamination in bird lungs: evidence of ecological risks and bioindicator potential.

J Hazard Mater

January 2025

Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China. Electronic address:

Microplastics (MPs, 1 µm-5 mm) and nanoplastics (NPs, < 1 µm), collectively termed micro(nano)plastics (MNPs), are pervasive airborne pollutants with significant ecological risks. Birds, recognized as bioindicators, are particularly vulnerable to MNP exposure, yet the extent and risks of MNP pollution in bird lungs remain largely unexplored. This study assessed MP exposure in bird lungs of 51 species and NP exposure in the lungs of five representative species using laser direct infrared (LDIR) and pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) techniques, respectively.

View Article and Find Full Text PDF

Emerging contaminants are a matter of growing concern for environmental and human health and safety, requiring efficient and affordable sensing platforms. Laser-induced graphene (LIG) is a novel material with a 3D porous graphene structure that can be fabricated in a simple one-step fabrication process. However, most LIG-based works in electrochemical sensors are limited to polyimide (PI)-based platforms, thus limiting the purview of properties of LIG dependent on the substrate-laser interaction.

View Article and Find Full Text PDF

Inverse design of compact silicon photonic waveguide reflectors and their application for Fabry-Perot resonators.

Nanophotonics

July 2024

Material and Component Research Division, Superintelligence creative Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon, 34129, Republic of Korea.

Silicon photonic waveguide resonators, such as microring resonators, photonic crystal waveguide cavities, and Fabry-Perot resonators based on the distributed Bragg reflectors, are key device components for silicon-based photonic integrated circuits (Si-PIC). For the Si-PIC with high integration density, the device footprints of the conventional photonic waveguide resonators need to be more compact. Inverse design, which is operated by the design expectation and different from the conventional design methods, has been investigated for reducing the photonic device components nowadays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!