Special Issue "Fiber Optic Sensors and Applications": An Overview.

Sensors (Basel)

School of Electrical and Electronic Engineering and The Photonics Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

Published: June 2020

We present here the recent advance in exploring new detection mechanisms, materials, processes, and applications of fiber optic sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7348761PMC
http://dx.doi.org/10.3390/s20123400DOI Listing

Publication Analysis

Top Keywords

optic sensors
8
special issue
4
issue "fiber
4
"fiber optic
4
sensors applications"
4
applications" overview
4
overview advance
4
advance exploring
4
exploring detection
4
detection mechanisms
4

Similar Publications

Background: Laparoscopic surgery training is a demanding process requiring technical and nontechnical skills. Surgical training has evolved from traditional approaches to the use of immersive digital technologies such as virtual, augmented, and mixed reality. These technologies are now integral to laparoscopic surgery training.

View Article and Find Full Text PDF

To accurately model the specific detection characteristics of spectral sensors based on linear variable filters (LVFs) within an optical design tool, it is essential to consider crucial position-variable spectral properties, such as peak transmittance, central wavelength, half width, or slope steepness. In this context, we propose a straightforward approach, integrating a dynamic link library (DLL) containing all position-dependent spectral properties of the LVF into a commercial optical design software. Exemplary investigations are conducted for an LVF with a detection range of 450-850 nm.

View Article and Find Full Text PDF

On the heels of the continuous development of optical fiber sensing technology, optical fiber sensors based on surface plasmon resonance (SPR) have attracted widespread attention. Herein, an SPR sensor based on the six nested anti-resonant fiber (ARF) is designed and analyzed by the finite element method (FEM). All the structural parameters are optimized to achieve high-sensitivity liquid refractive index detection.

View Article and Find Full Text PDF

Spontaneously Photocatalytic Nanoplatform for Sensitive Diagnosis and Penetrated Therapy of Cancer.

Anal Chem

January 2025

Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.

In this study, a sensitive diagnosis and spontaneously photocatalytic therapy of cancer based on chemiluminescence (CL) and nanozyme was studied. Briefly, carbon nitride-supported copper nanoparticles (CuCNs) loaded with luminol (CuCN-L) were utilized to develop a microneedle patch (CuCN-L/MN). The CuCN-L probe could target overexpressed HO in the TME and actively emit CL to achieve cancer cell imaging for diagnosis.

View Article and Find Full Text PDF

Ultrafast Charge Carrier Dynamics in Vanadium Dioxide, VO: Nonequilibrium Contributions to the Photoinduced Phase Transitions.

J Phys Chem Lett

January 2025

Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States.

Vanadium oxide (VO) is an exotic phase-change material with diverse applications ranging from thermochromic smart windows to thermal sensors, neuromorphic computing, and tunable metasurfaces. Nonetheless, the mechanism responsible for its metal-insulator phase transition remains a subject of vigorous debate. Here, we investigate the ultrafast dynamics of the photoinduced phase transition in VO under low perturbation conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!