A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sortation Control Using Multi-Agent Deep Reinforcement Learning in -Grid Sortation System. | LitMetric

Intralogistics is a technology that optimizes, integrates, automates, and manages the logistics flow of goods within a logistics transportation and sortation center. As the demand for parcel transportation increases, many sortation systems have been developed. In general, the goal of sortation systems is to route (or sort) parcels correctly and quickly. We design an -grid sortation system that can be flexibly deployed and used at intralogistics warehouse and develop a collaborative multi-agent reinforcement learning (RL) algorithm to control the behavior of emitters or sorters in the system. We present two types of RL agents, emission agents and routing agents, and they are trained to achieve the given sortation goals together. For the verification of the proposed system and algorithm, we implement them in a full-fledged cyber-physical system simulator and describe the RL agents' learning performance. From the learning results, we present that the well-trained collaborative RL agents can optimize their performance effectively. In particular, the routing agents finally learn to route the parcels through their optimal paths, while the emission agents finally learn to balance the inflow and outflow of parcels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349561PMC
http://dx.doi.org/10.3390/s20123401DOI Listing

Publication Analysis

Top Keywords

reinforcement learning
8
-grid sortation
8
sortation system
8
sortation systems
8
emission agents
8
routing agents
8
agents finally
8
finally learn
8
sortation
7
agents
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!