A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dermal bioaccessibility and absorption of polycyclic aromatic hydrocarbons (PAHs) in indoor dust and its implication in risk assessment. | LitMetric

Numerous studies have focused on assessing the risk of human exposure to polycyclic aromatic hydrocarbons (PAHs) in indoor dust via dermal contact. However, the dermal bioaccessibility and dermal absorption of PAHs in indoor dust have seldom been reported. In the present study, the effects of temperature, sweat ratio, solid-liquid ratio and incubation time on the dermal bioaccessibility of PAHs were examined. Naphthalene, phenanthrene, pyrene and benzo[a]pyrenewere selected for examination in an absorption assay with keratinocyte cells. The results showed the release of PAHs from indoor dust fitted a first-order one-compartment model. Naphthalene had the highest rate of release, which was consistent with the bioaccessibility assay results. In addition, the absorption rate of naphthalene and phenanthrene by keratinocytes was higher than that of pyrene and benzo[a]pyrene, with the latter being of higher molecular weight. These results indicated that low molecular weight PAHs were much more easily absorbed via dermal contact than were high molecular weight PAHs. The dermal bioavailability of PAHs in indoor dust was estimated by multiplying the bioaccessibility of PAHs in indoor dust by the ratio of dermal absorption by skin cells, and ranged from 0.12 to 51.0%. These data will be useful in risk assessments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.114829DOI Listing

Publication Analysis

Top Keywords

pahs indoor
24
indoor dust
24
dermal bioaccessibility
12
molecular weight
12
pahs
9
dermal
8
polycyclic aromatic
8
aromatic hydrocarbons
8
hydrocarbons pahs
8
dermal contact
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!