Oil Body Formation in Marchantia polymorpha Is Controlled by MpC1HDZ and Serves as a Defense against Arthropod Herbivores.

Curr Biol

Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional No. 168 km. 0, Paraje El Pozo, Santa Fe 3000, Argentina. Electronic address:

Published: July 2020

The origin of a terrestrial flora in the Ordovician required adaptation to novel biotic and abiotic stressors. Oil bodies, a synapomorphy of liverworts, accumulate secondary metabolites, but their function and development are poorly understood. Oil bodies of Marchantia polymorpha develop within specialized cells as one single large organelle. Here, we show that a class I homeodomain leucine-zipper (C1HDZ) transcription factor controls the differentiation of oil body cells in two different ecotypes of the liverwort M. polymorpha, a model genetic system for early divergent land plants. In flowering plants, these transcription factors primarily modulate responses to abiotic stress, including drought. However, loss-of-function alleles of the single ortholog gene, MpC1HDZ, in M. polymorpha did not exhibit phenotypes associated with abiotic stress. Rather, Mpc1hdz mutant plants were more susceptible to herbivory, and total plant extracts of the mutant exhibited reduced antibacterial activity. Transcriptomic analysis of the mutant revealed a reduction in expression of genes related to secondary metabolism that was accompanied by a specific depletion of oil body terpenoid compounds. Through time-lapse imaging, we observed that MpC1HDZ expression maxima precede oil body formation, indicating that MpC1HDZ mediates differentiation of oil body cells. Our results indicate that M. polymorpha oil bodies, and MpC1HDZ, are critical for defense against herbivory, but not for abiotic stress tolerance. Thus, C1HDZ genes were co-opted to regulate separate responses to biotic and abiotic stressors in two distinct land plant lineages.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2020.05.081DOI Listing

Publication Analysis

Top Keywords

oil body
20
oil bodies
12
abiotic stress
12
oil
8
body formation
8
marchantia polymorpha
8
biotic abiotic
8
abiotic stressors
8
differentiation oil
8
body cells
8

Similar Publications

Physiological accumulation of lipid droplets in newborn liver during breastfeeding is driven by TLR4 ligands.

J Lipid Res

January 2025

Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. Electronic address:

Background: The liver plays a central role in fat storage, but little is known about physiological fat accumulation during early development. Here we investigated a transient surge in hepatic lipid droplets observed in newborn mice immediately after birth.

Methods: We developed a novel model to quantify liver fat content without tissue processing.

View Article and Find Full Text PDF

Lipid droplet targeting of the lipase co-activator ABHD5 and the fatty liver disease-causing variant PNPLA3 I148M is required to promote liver steatosis.

J Biol Chem

January 2025

Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA 48202. Electronic address:

The storage and release of triacylglycerol (TAG) in lipid droplets (LDs) is regulated by dynamic protein interactions. α/β hydrolase domain-containing protein 5 (ABHD5; also known as CGI-58) is a membrane/LD bound protein that functions as a co-activator of Patatin Like Phospholipase Domain Containing 2 (PNPLA2; also known as Adipose triglyceride lipase, ATGL) the rate-limiting enzyme for TAG hydrolysis. The dysregulation of TAG hydrolysis is involved in various metabolic diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD).

View Article and Find Full Text PDF

Effects of drinking water supplemented with apple vinegar, essential oils, or colistin sulfate on growth performance, blood lipids, antioxidant status, intestinal morphology, and gut microflora of broiler chickens.

Poult Sci

January 2025

School of Agriculture and Food Sustainability, The University of Queensland, Gatton Campus, Gatton, QLD 4343, Australia; Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-4364, Iran.

With rising concerns about antibiotic resistance and its consequences on public health, the identification of safe and effective alternatives to antibiotics in the poultry industry has become increasingly critical. This study aimed to evaluate the effects of supplementing drinking water with apple vinegar and essential oils, compared to an antibiotic growth promoter, on the growth performance, serum lipid profile, antioxidant status, intestinal morphology, and gastrointestinal microflora population of broiler chickens. A total of 240 one-day-old male broiler chickens were randomly assigned to four treatments, each consisting of six replicate pens with ten birds per pen.

View Article and Find Full Text PDF

Engineered immune cell therapy has proven to be a transformative cancer treatment despite the challenges of its prohibitive costs and manufacturing complexity. In this study, we propose a concise "lipid droplet fusion" strategy for engineering macrophages. Because of the integration of hydrophobic alkyl chains and π-conjugated structures, the mildly synthesized sp2C-conjugated covalent organic framework (COF) UM-101 induced lipid droplet fusion and metabolic reprogramming of macrophages, thus promoting their antitumor classical activation.

View Article and Find Full Text PDF

Microglia are progressively activated by inflammation and exhibit phagocytic dysfunction in the pathogenesis of neurodegenerative diseases. Lipid-droplet-accumulating microglia were identified in the aging mouse and human brain; however, little is known about the formation and role of lipid droplets in microglial neuroinflammation of Alzheimer's disease (AD). Here, we report a striking buildup of lipid droplets accumulation in microglia in the 3xTg mouse brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!