Successful cloning by somatic cell nuclear transfer (SCNT) requires overcoming significant epigenetic barriers. Genomic imprinting is not generally regarded as such a barrier, although H3K27me3-dependent imprinting is differentially distributed in E6.5 epiblast and extraembryonic tissues. Here we report significant enhancement of SCNT efficiency by deriving somatic donor cells carrying simultaneous monoallelic deletion of four H3K27me3-imprinted genes from haploid mouse embryonic stem cells. Quadruple monoallelic deletion of Sfmbt2, Jade1, Gab1, and Smoc1 normalized H3K27me3-imprinted expression patterns and increased fibroblast cloning efficiency to 14% compared with a 0% birth rate from wild-type fibroblasts while preventing the placental and body overgrowth defects frequently observed in cloned animals. Sfmbt2 deletion was the most effective of the four individual gene deletions in improving SCNT. These results show that lack of H3K27me3 imprinting in somatic cells is an epigenetic barrier that impedes post-implantation development of SCNT embryos and can be overcome by monoallelic imprinting gene deletions in donor cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.stem.2020.05.014 | DOI Listing |
Hum Mol Genet
January 2025
Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Earlham Road, Norwich NR4 6PN, United Kingdom.
Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.
View Article and Find Full Text PDFPlant Cell
December 2024
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China.
Seed dormancy, an essential trait for plant adaptation, is determined by the embryo itself and the surrounding tissues. Here, we found that rice (Oryza sativa) FERTILIZATION-INDEPENDENT ENDOSPERM1 (OsFIE1) regulates endosperm-imposed dormancy and the dorsal aleurone thickness in a manner dependent on the parent of origin. Maternally expressed OsFIE1 suppresses gibberellin (GA) biosynthesis in the endosperm by depositing trimethylation of lysine 27 on histone H3 (H3K27me3) marks on GA biosynthesis-related genes, thus inhibiting germination and aleurone differentiation.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
EED (embryonic ectoderm development) is a core subunit of the polycomb repressive complex 2 (PRC2), which senses the trimethylation of histone H3 lysine 27 (H3K27). However, its biological function in cerebellar development remains unknown. Here, we show that EED deletion from neural stem cells (NSCs) or cerebellar granule cell progenitors (GCPs) leads to reduced GCPs proliferation, cell death, cerebellar hypoplasia, and motor deficits in mice.
View Article and Find Full Text PDFNat Plants
August 2024
Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan.
Nucleic Acids Res
August 2024
Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany.
Genomic imprinting, an epigenetic phenomenon leading to parent-of-origin-specific gene expression, has independently evolved in the endosperm of flowering plants and the placenta of mammals-tissues crucial for nurturing embryos. While transposable elements (TEs) frequently colocalize with imprinted genes and are implicated in imprinting establishment, direct investigations of the impact of de novo TE transposition on genomic imprinting remain scarce. In this study, we explored the effects of chemically induced transposition of the Copia element ONSEN on genomic imprinting in Arabidopsis thaliana.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!