The beetle family Carabidae, with about 40,000 species, exhibits enough diversity in sperm structure and behavior to be an excellent model system for studying patterns and processes of evolution. We explore their potential, documenting sperm form in 177 species of ground beetles using light microscopy and collecting data on one qualitative and seven quantitative phenotypic traits. Our sampling captures 61% of the tribal-level diversity of ground beetles. These data highlight the notable morphological diversity of sperm in ground beetles and suggest that sperm in the group have dynamic evolutionary histories with much morphological innovation and convergence. Sperm vary among species in total length (48-3,400 μm), head length (0.5-270 μm), and head width (0.2-6.3 μm). Most ground beetles make sperm with heads that are indistinct from the flagella at the gross morphological level. However, some or all Omophron, Trachypachus, and Dyschiriini make broad-headed sperm that show morphological differences between species. Most ground beetles package their sperm into groups of sperm, termed conjugates, and ground beetles show variation in conjugate form and in the number and arrangement of sperm in a conjugate. Most ground beetles make sperm conjugates by embedding their sperm in a hyaline rod or spermatostyle. The spermatostyle is remarkably variable among species and varies in length from 17 to 41,000 μm. Several unrelated groups of ground beetles make only singleton sperm, including Nebriinae, Cicindelinae, many Trechinae, and the tribe Paussini. In order to study patterns in sperm evolution, we combine these data with a low-resolution phylogeny of ground beetles. Results from modern comparative analyses suggest the following: (a) sperm differ from conjugates in some aspect of their underlying evolutionary process, (b) sperm have influenced conjugate evolution and vice versa, and (c) conjugation with a spermatostyle likely evolved early within the history of Carabidae and it has been lost independently at least three times.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmor.21144DOI Listing

Publication Analysis

Top Keywords

ground beetles
40
sperm
18
beetles sperm
12
ground
10
beetles
10
patterns sperm
8
sperm morphological
8
morphological diversity
8
diversity sperm
8
species ground
8

Similar Publications

Microplastics inhibit the decomposition of soil organic matter by adult darkling beetles (Coleoptera: Tenebrionidae).

Environ Entomol

December 2024

Department of Biology, and the Program in Environmental Science, Whittier College, Whittier, CA, USA.

Microplastics (MPs) are a growing problem worldwide. Soils are long-term storage sinks of MPs because of the many pathways they enter the soil and their long degradation period. Knowing how MPs influence soil organisms, the effects of organisms on the fate of MPs, and what this means for soil additions, losses, transformations, and translocations is paramount.

View Article and Find Full Text PDF

The Arctic has warmed nearly four times faster than the global average since 1979, resulting in rapid glacier retreat and exposing new glacier forelands. These forelands offer unique experimental settings to explore how global warming impacts ecosystems, particularly for highly climate-sensitive arthropods. Understanding these impacts can help anticipate future biodiversity and ecosystem changes under ongoing warming scenarios.

View Article and Find Full Text PDF

In this contribution we describe and illustrate for the first time the larvae of three species of Platynectes Régimbart, 1879 (P. agallithoplotes Gustafson, Short & Miller, 2016, P. bakewelli (Clark, 1863), and P.

View Article and Find Full Text PDF
Article Synopsis
  • Lack of knowledge about species distribution hinders large-scale biodiversity studies, often reflecting only where sampling has occurred.
  • This study focuses on ground beetles and tiger beetles in El Salvador, reporting findings from literature review, fieldwork, and collections.
  • The article identifies 66 species across eight subfamilies and aims to encourage further research into the taxonomy and ecology of these beetles in the region.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!