Poor indoor air quality indicated by elevated indoor CO concentrations has been linked with impaired cognitive function, yet current findings of the cognitive impact of CO are inconsistent. This review summarizes the results from 37 experimental studies that conducted objective cognitive tests with manipulated CO concentrations, either through adding pure CO or adjusting ventilation rates (the latter also affects other indoor pollutants). Studies with varied designs suggested that both approaches can affect multiple cognitive functions. In a subset of studies that meet objective criteria for strength and consistency, pure CO at a concentration common in indoor environments was only found to affect high-level decision-making measured by the Strategic Management Simulation battery in non-specialized populations, while lower ventilation and accumulation of indoor pollutants, including CO , could reduce the speed of various functions but leave accuracy unaffected. Major confounding factors include variations in cognitive assessment methods, study designs, individual and populational differences in subjects, and uncertainties in exposure doses. Accordingly, future research is suggested to adopt direct air delivery for precise control of CO inhalation, include brain imaging techniques to better understand the underlying mechanisms that link CO and cognitive function, and explore the potential interaction between CO and other environmental stimuli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ina.12706 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!