Colorectal cancer (CRC) is one of the most common malignant tumors worldwide. In terms of cancer-related death, colon cancer ranks second and third among men and women, respectively, and the incidence is increasing annually. Accumulating evidence have indicated that long noncoding RNA (lncRNA) plays an important role in tumorigenesis. In this study, we found that lncRNA EPB41L4A-AS1 was highly expressed in CRC tissues and was associated with poor prognosis and tumor metastasis in patients with CRC. In vitro studies showed that the knockdown of EPB41L4A-AS1 inhibited the proliferation, migration, invasion, and epithelial-mesenchymal transition of CRC cells. Mechanically, we found that EPB41L4A-AS1 may participate in the development of CRC by activating the Rho/Rho-associated protein kinase signaling pathway. Collectively, these results demonstrated that EPB41L4A-AS1 can promote the proliferation, invasion, and migration of CRC, and it may be a novel biomarker for the diagnosis and targeted treatment of CRC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.29880DOI Listing

Publication Analysis

Top Keywords

long noncoding
8
noncoding rna
8
colorectal cancer
8
crc
7
epb41l4a-as1
5
rna epb41l4a-as1
4
epb41l4a-as1 functions
4
functions oncogene
4
oncogene regulating
4
regulating rho/rock
4

Similar Publications

Introduction: Acute myeloid leukemia (AML), a highly heterogeneous hematological malignancy, remains a major challenge in adult oncology. Stem cell research has highlighted the crucial role of long noncoding RNA (lncRNA) in regulating cellular differentiation and self-renewal processes, which are pivotal in AML pathogenesis and therapy resistance.

Methods: This study explores the relationship between cuproptosis-related lncRNAs and AML prognosis, providing novel insights into their impact on hematopoietic stem and progenitor cells.

View Article and Find Full Text PDF

NEAT1 regulates BMSCs aging through disruption of FGF2 nuclear transport.

Stem Cell Res Ther

January 2025

College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.

Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the regulatory effects of long non-coding RNA-ANRIL on CDKN2A in the cell cycle of Kasumi-1 cells and elucidate the underlying molecular mechanisms.

Methods: ANRIL and CDKN2A expression levels were quantified using RT-qPCR in peripheral blood samples from acute myeloid leukemia (AML) patients. CDKN2A knockdown efficiency was validated via RT-qPCR, and cell cycle distribution was analyzed using flow cytometry.

View Article and Find Full Text PDF

In the past decade, our understanding of how new genes originate in diverse organisms has advanced substantially, and more than a dozen molecular mechanisms for generating initial gene structures were identified, in addition to gene duplication. These new genes have been found to integrate into and modify pre-existing gene networks primarily through mutation and selection, revealing new patterns and rules with stable origination rates across various organisms. This progress has challenged the prevailing belief that new proteins evolve from pre-existing genes, as new genes may arise de novo from noncoding DNA sequences in many organisms, with high rates observed in flowering plants.

View Article and Find Full Text PDF

The cabbage aphid, Brevicoryne brassicae, is a major pest on Brassicaceae plants, causing significant yield losses annually. However, the lack of genomic resources has hindered progress in understanding this pest at the molecular level. Here, we present a high-quality, chromosomal-level genome assembly for B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!