Fluorine NMR has recently gained high popularity in drug discovery as it allows efficient and sensitive screening of large numbers of ligands. However, the positive hits found in screening must subsequently be ranked according to their affinity in order to prioritize them for follow-up chemistry. Unfortunately, the primary read-out from the screening experiments, namely the increased relaxation rate upon binding, is not proportional to the affinity of the ligand, as it is polluted by effects such as exchange broadening. Here we present the method CSAR (Chemical Shift-anisotropy-based Affinity Ranking) for reliable ranking of fluorinated ligands by NMR, without the need of isotope labeled protein, titrations or setting up a reporter format. Our strategy is to produce relaxation data that is directly proportional to the binding affinity. This is achieved by removing all other contributions to relaxation as follows: (i) exchange effects are efficiently suppressed by using high power spin lock pulses, (ii) dipolar relaxation effects are approximately subtracted by measuring at two different magnetic fields and (iii) differences in chemical shift anisotropy are normalized using calculated values. A similar ranking can be obtained with the simplified approach FastCSAR that relies on a measurement of a single relaxation experiment at high field (preferably > 600 MHz). An affinity ranking obtained in this simple way will enable prioritizing ligands and thus improve the efficiency of fragment-based drug design.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10858-020-00325-xDOI Listing

Publication Analysis

Top Keywords

affinity ranking
12
ranking fluorinated
8
fluorinated ligands
8
ligands nmr
8
ranking
5
affinity
5
relaxation
5
efficient affinity
4
ligands
4
nmr csar
4

Similar Publications

Plastics play an essential role in modern fisheries and their degradation releases micro- and nano-sized plastic particles which further causes ecological and human health hazards through various environmental contamination pathways and toxicity mechanisms, which can cause respiratory problems, cancer, reproductive toxicity, endocrine disruption and neurological effects in humans. This study utilized various bioinformatics tools through multi-step computational analyses to investigate the interactions between prevalent fisheries microplastics and the key protein receptor acetylcholinesterase (AChE), which is associated with neurotoxicity, as it can interfere with nerve impulses and muscle control. Our results indicate that the binding of seven polymers within AChE's active site, with dodecane and polypropylene exhibited highest affinity with hydrogen bonding were observed through Molecular docking of different program (PyRx) and servers (CB-Dock, eDock) then the stability of AChE-dodecane and AChE-polypropylene complexes were observed through MD simulations for 100 ns.

View Article and Find Full Text PDF

Chromatographic retention assisted in-silico prediction of anticancer potential of glucocorticoids on cancer cell lines.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt.

Glucocorticoids (GCs) are hallmarks of anti-inflammatory activity. They are used as adjuvant therapy in oncology medications to alleviate some of the associated side effects. Although recent research has indicated that GCs have favorable anticancer potential, some scientific evidence suggests a pro-proliferation impact of GCs on cancer cells.

View Article and Find Full Text PDF

Purpose: The incidence of Functional Dyspepsia (FD) is gradually increasing, yet there are currently no effective treatment methods available. This study explored the effective components, potential targets, and pathways of Shi-San-Wei-He-Zhong-Wan (SSWHZW) in the treatment of FD, aiming to provide new insights into its treatment.

Methods: First, the Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP) and GeneCards databases were utilized to identify the major active components of SSWHZW and potential therapeutic targets of FD.

View Article and Find Full Text PDF

Transcriptome analysis reveals the different toxic mechanism of three HBCD diastereoisomers to Brachionus plicatilis based on chemical defensome.

J Hazard Mater

January 2025

Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China. Electronic address:

The emerging contaminants hexabromocyclododecanes (HBCDs) are proved to exhibit highly reproductive toxicity to marine rotifer Brachionus plicatilis, but how about the toxic differentiation among three diastereoisomers of HBCD, and what's the possible hidden mechanism? B. plicatilis was exposed to different concentrations of HBCD diastereoisomers, and the results showed that α-, β- and γ-HBCD exhibited various toxicity on it, the adverse effects on individual life history traits included shortened lifespan, shortened body length and reduced offspring number. Population dynamics analysis showed that the maximum population density and time to reach it were also significantly influenced.

View Article and Find Full Text PDF

Protein-protein interactions in the cell membrane are typically mediated by glycans, with terminal sialic acid often involved in these interactions. To probe the nature of the interactions, we developed quantitative cross-linking methods involving the glycans of the glycoproteins and the polypeptide moieties of proteins. We designed and synthesized biotinylated enrichable cross-linkers that were click-tagged to metabolically incorporate azido-sialic acid on cell surface glycans to allow cross-linking of the azido-glycans with lysine residues on proximal polypeptides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!