Introduction: The metabolic alterations reflecting the influence of prostate cancer cells can be captured through metabolomic profiling.

Objective: To characterize the plasma metabolomic profile in prostatic intraepithelial neoplasia (PIN) and prostate cancer (PCa).

Methods: Metabolomics analyses were performed in plasma samples from individuals classified as non-cancerous control (n = 36), with PIN (n = 16), or PCa (n = 27). Untargeted [26 moieties identified after pre-processing by gas chromatography/mass spectrometry (GC/MS)] and targeted [46 amino acids, carbohydrates, organic acids and fatty acids by GC/MS, and 16 nucleosides and amino acids by ultra performance liquid chromatography-triple quadrupole/mass spectrometry (UPLC-TQ/MS)] analyses were performed. Prostate specific antigen (PSA) concentrations were measured in all samples. In PCa patients, the Gleason scores were determined.

Results: The metabolites that were best discriminated (p < 0.05, FDR < 0.2) for the Kruskal-Wallis test with Dunn's post-hoc comparing the control versus the PIN and PCa groups included isoleucine, serine, threonine, cysteine, sarcosine, glyceric acid, among several others. PIN was mainly characterized by alterations on steroidogenesis, glycine and serine metabolism, methionine metabolism and arachidonic acid metabolism, among others. In the case of PCa, the most predominant metabolic alterations were ubiquinone biosynthesis, catecholamine biosynthesis, thyroid hormone synthesis, porphyrin and purine metabolism. In addition, we identified metabolites that were correlated to the PSA [i.e. hypoxanthine (r = - 0.60, p < 0.05; r = - 0.54, p < 0.01) and uridine (r = - 0.58, p < 0.05; r = - 0.50, p < 0.01) in PIN and PCa groups, respectively] and metabolites that were significantly different in PCa patients with Gleason score < 7 and ≥ 7 [i.e. arachidonic acid, median (P25-P75) = 883.0 (619.8-956.4) versus 570.8 (505.6-651.8), respectively (p < 0.01)].

Conclusions: This human plasma metabolomic assessment contributes to the understanding of the unique metabolic features exhibited in PIN and PCa and provides a list of metabolites that can have the potential to be used as biomarkers for early detection of disease progression and management.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11306-020-01694-yDOI Listing

Publication Analysis

Top Keywords

prostate cancer
12
plasma metabolomic
8
metabolomic profile
8
profile prostatic
8
prostatic intraepithelial
8
intraepithelial neoplasia
8
analyses performed
8
amino acids
8
prostate
4
neoplasia prostate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!