Purpose: Macrophages play vital roles in the development of atherosclerosis in responding to lipid accumulation and inflammation. Macrophages were classified as inflammatory (M1) and alternatively activated (M2) macrophage types based on results of in vitro experiments. On the other hand, the composition of macrophages in vivo is more complex and remains unresolved. This review summarizes the transcriptional variations of macrophages in atherosclerosis plaques that were discovered by single-cell RNA sequencing (scRNA-seq) to better understand their contribution to atherosclerosis.

Recent Findings: ScRNA-seq provides a more detailed transcriptional landscape of macrophages in atherosclerosis, which challenges the traditional view. By mining the data of GSE97310, we discovered the transcriptional variations of macrophages in LDLR mice that were fed with high-fat diet (HFD) for 11 and 20 weeks. Cells were represented in a two-dimensional tSNE plane and clusters were identified and annotated via Seurat and SingleR respectively, which were R toolkits for single-cell genomics. The results showed that in healthy conditions, Trem2 (high expression of triggering receptors expressed on myeloid cells 2)-positive, inflammatory, and resident-like macrophages make up 68%, 18%, and 6% of total macrophages respectively. When mice were fed with HFD for 11 weeks, Trem2, monocytes, and monocyte-derived dendritic cells take possession of 40%, 18%, and 17% of total macrophages respectively. After 20 weeks of HFD feeding, Trem2, inflammatory, and resident-like macrophages occupied 12%, 37%, and 35% of total macrophages respectively. The phenotypes of macrophages are very different from the previous studies. In general, Trem2 macrophages are the most abundant population in healthy mice, while the proportion of monocytes increases after 11 weeks of HFD. Most importantly, inflammatory and resident-like macrophages make up 70% of the macrophage populations after 20 weeks of HFD. These strongly indicate that inflammatory and resident-like macrophages promote the progression of atherosclerosis plaques.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11883-020-00850-yDOI Listing

Publication Analysis

Top Keywords

inflammatory resident-like
16
resident-like macrophages
16
macrophages
15
total macrophages
12
transcriptional variations
8
variations macrophages
8
macrophages atherosclerosis
8
atherosclerosis plaques
8
mice fed
8
20 weeks hfd
8

Similar Publications

Background And Hypothesis: Kidney macrophage infiltration is a histological hallmark of vasculitic lesions and is strongly linked to disease activity in anti-neutrophil cytoplasmic antibodies (ANCA)-associated glomerulonephritis (AGN). The precise mechanisms by which kidney macrophages influence local inflammation and long-term damage remain largely unknown.

Methods: Here, we investigate kidney macrophage diversity using single-cell transcriptome analysis of 25 485 freshly retrieved unfrozen, high-quality kidney CD45+ immune cells from five AGN patients during active disease, a lupus nephritis and nephrectomy control.

View Article and Find Full Text PDF

Macrophages are required for healthy repair of the lungs following injury, but they are also implicated in driving dysregulated repair with fibrosis. How these 2 distinct outcomes of lung injury are mediated by different macrophage subsets is unknown. To assess this, single-cell RNA-Seq was performed on lung macrophages isolated from mice treated with LPS or bleomycin.

View Article and Find Full Text PDF

Eosinophils play a key role in allergic diseases such as insect bite hypersensitivity (IBH). Together with Th2 cells, they shape the course of inflammation in associated type I/IVb allergies. Therefore, a virus-like particle (VLP)-based vaccine targeting equine interleukin-5 (eIL-5), eIL-5-CuMV-TT, was developed to interfere with the IL-5 dependency of eosinophils by inducing the production of anti-self-IL-5 antibodies and alleviating clinical signs in IBH-affected horses.

View Article and Find Full Text PDF

Sex-specific effects of injury and beta-adrenergic activation on metabolic and inflammatory mediators in a murine model of post-traumatic osteoarthritis.

Osteoarthritis Cartilage

September 2024

Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Oklahoma City VA Health Care System, Oklahoma City, OK 73104, USA; Oklahoma Center for Geroscience and the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA. Electronic address:

Objective: Metabolic processes are intricately linked to the resolution of innate inflammation and tissue repair, two critical steps for treating post-traumatic osteoarthritis (PTOA). Based on lipolytic and immunoregulatory actions of norepinephrine, we hypothesized that intra-articular β-adrenergic receptor (βAR) stimulation would suppress PTOA-associated inflammation in the infrapatellar fat pad (IFP) and synovium.

Design: We used the βAR agonist isoproterenol to perturb intra-articular metabolism 3.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) can be widely heterogeneous, based on their ontogeny and function, and driven by the tissue-specific niche. TAMs are highly abundant in the melanoma tumor microenvironment (TME), usually correlating with worse prognoses. However, the understanding of their diversity may be harnessed for therapeutic purposes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!