A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An overview on marine cellulolytic enzymes and their potential applications. | LitMetric

An overview on marine cellulolytic enzymes and their potential applications.

Appl Microbiol Biotechnol

Department of Microbiology, University of Karachi, Karachi, 75270, Pakistan.

Published: August 2020

Marine-derived enzymes have recently gained attention particularly for industrial applications. Cellulose-degrading enzymes are among leading biocatalysts with potential utility in biorefineries. This review presents an account of the cellulase production by marine sources from microorganisms including bacteria, yeasts, and molds to marine invertebrates such as protist, rotifer, mollusks, arthropods, and echinoderms. Cellulose-degrading ability of marine invertebrates is attributed to the production of endogenous cellulases and activities by the symbionts. Specialized environments in marine including estuaries and mangroves are rich in lignocellulosic biomass and hence provide a feeding ground for cellulose digesters. Since cellulosic biomass is considered chemical and energy feedstock, therefore, cellulases with the ability to work under extreme environment are much needed to fulfill the demand of modern biotechnological industries. The review also discusses physicochemical parameters of marine-derived cellulases. Key Points: • Cellulolytic ability is widely distributed amongst marine organisms, yet very few have been studied for their biotechnological potential • Cellulase from marine organisms has been demonstrated as a successful agent in degradation of seaweed processing waste to low molecular fragments • Marine derived cellulases can find their application in green processes • Cellulases from marine sources exhibit high specific activity, thermostability, and other important biochemical properties and hence can contend well with the enzymes from terrestrial sources.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-020-10692-yDOI Listing

Publication Analysis

Top Keywords

marine
8
marine sources
8
marine invertebrates
8
marine organisms
8
cellulases
5
overview marine
4
marine cellulolytic
4
enzymes
4
cellulolytic enzymes
4
enzymes potential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!