AI Article Synopsis

  • Thrombomodulin is crucial for preventing blood clots by binding to thrombin and activating protein C; this study highlights a new case of hereditary thrombomodulin deficiency.
  • The patient had a specific genetic mutation that disrupted thrombin binding and led to repeated bleeding and past brain infarcts.
  • Treatment with a form of thrombomodulin significantly improved the patient's clinical and laboratory outcomes, showing its effectiveness.

Article Abstract

Thrombomodulin functions as an anticoagulant through thrombin binding and protein C activation. We herein report the first case of hereditary functional thrombomodulin deficiency presenting with recurrent subcutaneous hemorrhage and old cerebral infarction. The patient had a homozygous substitution of glycine by aspartate at amino acid residue 412 (Gly412Asp) in the thrombin-binding domain of the thrombomodulin gene (designated thrombomodulin-Nagasaki). In vitro assays using a recombinant thrombomodulin with the same mutation as the patient showed a total lack of thrombin binding and activation of protein C and thrombin-activatable fibrinolysis inhibitor (TAFI). Marked clinical and laboratory improvement was obtained with recombinant human soluble thrombomodulin therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7322956PMC
http://dx.doi.org/10.1182/bloodadvances.2019001155DOI Listing

Publication Analysis

Top Keywords

thrombin binding
12
thrombomodulin mutation
8
thrombomodulin
5
case thrombomodulin
4
mutation causing
4
causing defective
4
defective thrombin
4
binding absence
4
absence protein
4
protein tafi
4

Similar Publications

Dependence of clot structure and fibrinolysis on apixaban and clotting activator.

Res Pract Thromb Haemost

November 2024

Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA.

Background: Anticoagulants prevent the formation of potentially fatal blood clots. Apixaban is a direct oral anticoagulant that inhibits factor (F)Xa, thereby impeding the conversion of prothrombin into thrombin and the formation of blood clots. Blood clots are held together by fibrin networks that must be broken down (fibrinolysis) to restore blood flow.

View Article and Find Full Text PDF

Activated platelets promote coagulation primarily by exposing the procoagulant phospholipid phosphatidylserine (PS) on their outer membrane surfaces and releasing PS-expressing microvesicles that retain the original membrane architecture and cytoplasmic components of their originating cells. The accessibility of phosphatidylserine facilitates the binding of major coagulation factors, significantly amplifying the catalytic efficiency of coagulation enzymes, while microvesicle release acts as a pivotal mediator of intercellular signaling. Procoagulant platelets play a crucial role in clot stabilization during hemostasis, and their increased proportion in the bloodstream correlates with an increased risk of thrombosis.

View Article and Find Full Text PDF

Novel drug delivery systems for hirudin-based product development and clinical applications.

Int J Biol Macromol

December 2024

School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430061, PR China. Electronic address:

Hirudin, a natural biological polypeptide macromolecule secreted by the salivary glands of medicinal leech, is a specific thrombin inhibitor with multiple favourable bioactivities, including anti-coagulation, anti-fibrotic, and anti-tumour. Despite several anticoagulants have been widely applied in clinic, hirudin shows advantages in reducing the incidence of bleeding side effects by virtue of its high specificity in binding to thrombin. As a result, hirudin has been tested in clinical practice to prevent and treat several complex diseases.

View Article and Find Full Text PDF

Antithrombotic but not anticoagulant activity of the thrombin-binding RNA aptamer Apta-1.

Br J Pharmacol

December 2024

Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.

Background And Purpose: Pharmacological intervention of thrombosis is challenging, requiring a fined tune balance between beneficial antithrombotic effect versus risk of major bleeding complications. In this investigation, we elucidated the antithrombotic capacity of the novel 90-mer RNA aptamer Apta-1 and its underlying mechanism of action.

Experimental Approach: We utilized three independent in vivo animal models to establish antithrombotic activity and bleeding risk of Apta-1.

View Article and Find Full Text PDF

A subset of circulating human platelets stores Tissue Factor (TF) intracellularly, the key activator of the blood coagulation cascade and thrombus formation. Upon platelet activation, TF is exposed on the cell membrane, where it binds to FVII, ultimately leading to thrombin generation. Considering that (1) levels of TF-positive platelets increase in various clinical settings, contributing to the patient's prothrombotic phenotype, and (2) different drugs can modulate platelet-associated TF expression, a standardized method for assessing TF-positive platelets is valuable, as its evaluation has been controversial in the past.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!