Electrospun carbon nanofibers (CNFs), with one-dimensional (1D) morphology, tunable size, mechanical flexibility, and functionalities by themselves and those that can be added onto them, have witnessed the intensive development and extensive applications in energy storage and conversion, such as supercapacitors, batteries, and fuel cells. However, conventional solid CNFs often suffer from a rather poor electrical conductivity and low specific surface area, compared with the graphene and carbon nanotube counterparts. A well-engineered porous structure in CNFs increases their surface areas and reactivity, but there is a delicate balance between the level and type of pores and mechanical robustness. In addition, CNFs by themselves often show unsatisfactory electrochemical performance in energy storage and conversion, where, to endow them with high and durable activity, one effective approach is to dope CNFs with certain heteroatoms. Up to now, various activation strategies have been proposed and some of them have demonstrated great success in addressing these key issues. In this review, we focus on the recent advances in the issue-oriented schemes for activating the electrospun CNFs in terms of enhancing the conductivity, modulating pore configuration, doping with heteroatoms, and reinforcing mechanical strength, in close reference to their applications in supercapacitors. The basic scientific principles involved in these activation processes and their effectiveness in boosting the electrochemical performance of CNFs are examined. Finally, some of the on-going challenges and future perspectives in engineering CNFs for better performance are highlighted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0nr03425h | DOI Listing |
J Youth Adolesc
January 2025
Research Center of Adolescent Psychology and Behavior, School of Education, Guangzhou University, Guangzhou, China.
Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
A prevalent challenge in particulate photocatalytic water splitting lies in the fact that while numerous photocatalysts exhibit outstanding hydrogen evolution reaction (HER) activity in organic sacrificial reagents, their performance diminishes markedly in a Z-scheme water splitting system using electronic mediators. This underlying reason remains undefined, posing a long-standing issue in photocatalytic water splitting. Herein, we unveiled that the primary reason for the decreased HER activity in electronic mediators is due to the strong adsorption of shuttle ions on cocatalyst surfaces, which inhibits the initial proton reduction and results in a severe backward reaction of the oxidized shuttle ions.
View Article and Find Full Text PDFClin Pharmacol Ther
January 2025
Data Analytics and Methods Task Force, European Medicines Agency, Amsterdam, The Netherlands.
Biomarkers play a pivotal role in the selection and enrollment of trial participants. Particularly, predictive biomarkers help tailor medical care to individual patients; however, also prognostic biomarkers require consideration at the design stage. At the time of initiating a clinical trial, there may be uncertainty about whether a biomarker is predictive or prognostic, and the trial design may need to account for this.
View Article and Find Full Text PDFHealth Policy Plan
January 2025
Department of Anthropology, Durham University, South Road, Durham, DH1 3LE, UK.
Substandard and falsified (SF) medical products are a serious health and economic concern that disproportionately impact low- and middle-income countries and marginalized groups. Public education campaigns are demand-side interventions that may reduce risk of SF exposure, but the effectiveness of such campaigns, and their likelihood of benefitting everybody, is unclear. Nationwide pilot risk communication campaigns, involving multiple media, were deployed in Ghana, Nigeria, Sierra Leone, Uganda in 2020-2021.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
Electrochemical nitrogen conversion for ammonia (NH) synthesis, driven by renewable electricity, offers a sustainable alternative to the traditional Haber-Bosch process. However, this conversion process remains limited by a low Faradaic efficiency (FE) and NH yield. Although transition metals have been widely studied as catalysts for NH synthesis through effective electron donation/back-donation mechanisms, there are challenges in electrochemical environments, including competitive hydrogen evolution reaction (HER) and catalyst stability issues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!