Seeds stored in controlled conditions in gene banks, faster or slower lose their viability. The effects of seed moisture content levels (ca. 5, 8, 11%) combined with storage temperatures (-3°, -18°, -196°C) were investigated in terms of the description of seeds defined as orthodox under oxidative stress after seed storage, during germination, and initial seedling growth. Hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS) and ascorbate (Asc) were analyzed in relation to seed germinability and seedlings emergence in three species: Malus sylvestris L., Prunus avium L. and Prunus padus L. The effect of seed storage conditions on H2O2 levels appeared in germinated seeds after the third year of storage in each species. The H2O2 levels were negatively correlated with the germination and seedling emergence of P. avium seeds after three years of storage under all examined combinations. The emergence of P. padus seedlings was not linked to any of the stress markers tested. The P. padus seed biochemical traits were least altered by storage conditions, and the seeds produced tolerant seedlings of relatively high levels of H2O2 and TBARS. To cope with different H2O2 levels, TBARS levels, and Asc levels in seeds of three species varying storage conditions different molecular responses, i.e. repairing mechanisms, were applied during stratification to compensate for the storage conditions and, as a result, seeds remained viable and seedlings were successfully established.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302524PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234510PLOS

Publication Analysis

Top Keywords

storage conditions
16
seed storage
12
h2o2 levels
12
storage
9
seedling growth
8
malus sylvestris
8
sylvestris prunus
8
prunus avium
8
avium prunus
8
prunus padus
8

Similar Publications

Cellulase was effectively immobilized onto an epoxy-bound chitosan-modified zinc metal-organic framework (epoxy/ZIF-8/CS/cellulase) support, yielding a conjugation rate of 0.64 ± 0.02 mg/cm2 and retaining 80.

View Article and Find Full Text PDF

Forests have the potential to contribute significantly to global climate policy efforts through enhanced carbon sequestration and storage in terrestrial systems and wood products. Projections models simulate changes future in forest carbon fluxes under different environmental, economic, and policy conditions and can inform landowners and policymakers on how to best utilize global forests for mitigating climate change. However, forest carbon modeling frameworks are often developed and applied in a highly disciplinary manner, e.

View Article and Find Full Text PDF

Response of Differently Structured Dental Polymer-Based Composites to Increasingly Aggressive Aging Conditions.

Nanomaterials (Basel)

January 2025

Department of Conservative Dentistry, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany.

Objective: It is hypothesized that the way nano- and micro-hybrid polymer-based composites are structured and cured impacts the way they respond to aging.

Material And Methods: A polymer-ceramic interpenetrating network composite (Vita Enamic/VE), an industrially polymerized (Brillinat CriosST/BC), and an in situ light-cured composite with discrete inorganic fillers (Admira Fusion5/AF5) were selected. Specimens (308) were either cut from CAD/CAM blocks (VE/BC) or condensed and cured in white polyoxymethylene molds (AF5) and subjected to four different aging conditions ( = 22): (a) 24 h storage in distilled water at 37 °C; (b) 24 h storage in distilled water at 37 °C followed by thermal cycling for 10,000 cycles 5/55 °C (TC); (c) TC followed by storage in a 75% ethanol-water solution; and (d) TC followed by a 3-week demineralization/remineralization cycling.

View Article and Find Full Text PDF

Borohydrides, known for ultrahigh hydrogen density, are promising hydrogen storage materials but typically require high operating temperatures due to their strong thermodynamic stability. Here we introduce a novel light-induced destabilization mechanism for hydrogen storage reaction of borohydrides under ambient conditions photogenerated vacancies in LiH. These vacancies thermodynamically destabilize B-H bonds through the spontaneous "strong adsorption" of BH groups, which trigger an asymmetric redistribution of electrons, enabling hydrogen release at near room temperature, approximately 300 °C lower than the corresponding thermal process.

View Article and Find Full Text PDF

Room-Temperature Magnetic Antiskyrmions in Canted Ferrimagnetic CoHo Alloy Films.

Adv Mater

January 2025

School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China.

Magnetic antiskyrmions, the anti-quasiparticles of magnetic skyrmions, possess alternating Bloch- and Néel-type spin spirals, rendering them promising for advanced spintronics-based information storage. To date, antiskyrmions are demonstrated in a few bulk materials featuring anisotropic Dzyaloshinskii-Moriya interactions and a limited number of artificial multilayers. Identifying novel film materials capable of hosting isolated antiskyrmions is critical for memory applications in topological spintronics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!