AI Article Synopsis

Article Abstract

Objective: Consuming sweet foods, even when sated, can lead to unwanted weight gain. Contextual factors, such as longer time fasting, subjective hunger, and body mass index (BMI), may increase the likelihood of overeating. Nevertheless, the neural mechanisms underlying these moderating influences on energy intake are poorly understood.

Methods: We conducted both categorical meta-analysis and meta-regression of factors modulating neural responses to sweet stimuli, using data from 30 functional magnetic resonance imaging (fMRI) articles incorporating 39 experiments (N = 995) carried out between 2006 and 2019.

Results: Responses to sweet stimuli were associated with increased activity in regions associated with taste, sensory integration, and reward processing. These taste-evoked responses were modulated by context. Longer fasts were associated with higher posterior cerebellar, thalamic, and striatal activity. Greater self-reported hunger was associated with higher medial orbitofrontal cortex (OFC), dorsal striatum, and amygdala activity and lower posterior cerebellar activity. Higher BMI was associated with higher posterior cerebellar and insular activity.

Conclusions: Variations in fasting time, self-reported hunger, and BMI are contexts associated with differential sweet stimulus responses in regions associated with reward processing and homeostatic regulation. These results are broadly consistent with a hierarchical model of taste processing. Hunger, but not fasting or BMI, was associated with sweet stimulus-related OFC activity. Our findings extend existing models of taste processing to include posterior cerebellar regions that are associated with moderating effects of both state (fast length and self-reported hunger) and trait (BMI) variables.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8023765PMC
http://dx.doi.org/10.1038/s41366-020-0608-5DOI Listing

Publication Analysis

Top Keywords

posterior cerebellar
16
responses sweet
12
sweet stimuli
12
regions associated
12
associated higher
12
self-reported hunger
12
associated
9
hunger bmi
8
neural responses
8
reward processing
8

Similar Publications

Clinical spectrum of positional downbeat nystagmus: a diagnostic approach.

J Neurol

January 2025

Department of Neurology, University of Chicago, 5841 South Maryland Avenue, Chicago, IL, 60637, USA.

Positional downbeat nystagmus (pDBN) is a common finding in dizzy patients, with etiologies ranging from benign paroxysmal positional vertigo (BPPV) to central vestibular lesions. Although peripheral pDBN often presents with distinct clinical features that differentiate it from BPPV, diagnosing its etiology can be challenging. A thorough clinical evaluation, including the physical characteristics of the nystagmus, response to positional maneuvers, and neurological findings, is often sufficient to diagnose conditions that provoke pDBN such as anterior canal BPPV, atypical posterior canal BPPV, and central causes.

View Article and Find Full Text PDF

Lower back pain comprises the majority of the disease burden of patients with ankylosing spondylitis (AS), while the alterations of the large-scale brain networks could be implicated in the neuropathophysiology of pain. The frontoparietal network (FPN) is known as a pain modulation hub, with key nodes dorsolateral prefrontal cortex (dlPFC) and ventrolateral prefrontal cortex (vlPFC) participating in the pain modulation and reappraisal process. In this study, we adopted the analytical approaches of independent component analysis (ICA) and seed-based correlation analysis (SCA) to examine the resting-state functional connectivity (rsFC) of the large-scale brain networks, notably FPN, between 82 AS patients and 61 healthy controls (HCs).

View Article and Find Full Text PDF

Performance of a task involves the engagement of various brain areas, as evidenced by the effects of lesions of particular brain areas and the results of functional neuroimaging and neurophysiological studies. Here we tested the hypothesis that overall task performance would depend on the level of ongoing, resting-state change in synaptic activity of participating areas, such that the degree of success of the outcome would be higher, the higher the resting-state activation. For that purpose, we used 248-sensor magnetoencephalography (MEG) in healthy people to obtain estimates of resting-state synaptic activity in various areas and then correlated those estimates to the average performance score in three visuospatial tasks assessed outside the MEG session using the Montreal Cognitive Assessment (MoCA), namely the Trails, Cube, and Clock Drawing (TCCD) tasks.

View Article and Find Full Text PDF

Introduction: Neuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and emotional processing networks and may have therapeutic potential. However, the extent to which intranasal oxytocin modulates functional connectivity network topology remains less explored, with inconsistent findings in the existing literature. To address this gap, we conducted an exploratory data-driven study.

View Article and Find Full Text PDF

Synaptic Density Reductions in MSA: A Potential Biomarker Identified Through [F]SynVesT-1 PET Imaging.

Ann Neurol

January 2025

Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China.

Objective: The objective of this study was to delineate synaptic density alterations in multiple system atrophy (MSA) and explore its potential role as a biomarker for MSA diagnosis and disease severity monitoring using [F]SynVesT-1 positron emission tomography / computed tomography (PET CT).

Methods: In this prospective study, 60 patients with MSA (30 patients with MSA-parkinsonian [MSA-P] subtype and 30 patients with MSA-cerebellar [MSA-C] subtype), 30 patients with Parkinson's disease (PD), and 30 age-matched healthy controls (HCs) underwent [F]SynVesT-1 PET/CT for synaptic density assessment. Visual, voxel, and volumetric region of interest (VOI) analyses were used to elucidate synaptic density patterns in the MSA brain and establish diagnostic criteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!