In the past two decades, purinergic signaling has emerged as a key regulator of hematopoiesis in physiological and pathological conditions. ADP receptor P2y12 is a crucial component of this signaling, but whether it is involved in primitive hematopoiesis remains unknown. To elucidate the function of P2y12 and provide new insights for drug development, we established a zebrafish P2y12 mutant by CRISPR/Cas 9-based genetic modification system, and investigated whether P2y12 acted as an important regulator for primitive hematopoiesis. By using mass spectrometry (MS) combined with RNA sequencing, we showed that absence of P2y12 induced excessive erythropoiesis, evidenced by significantly increased expression of mature erythrocytes marker α-globin (Hbae1 and Hbae3), β-globin (Hbbe1 and Hbbe3). Expression pattern analysis showed that P2y12 was mainly expressed in red blood cells and endothelial cells of early zebrafish embryos. Further studies revealed that primitive erythroid progenitor marker Gata1 was markedly up-regulated. Remarkably, inhibition of Gata1 by injection of Gata1 morpholino could rescue the erythroid abnormality in P2y12 mutants. The present study demonstrates the essential role of purinergic signaling in differentiation of proerythrocytes during primitive hematopoiesis, and provides potential targets for treatment of blood-related disease and drug development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8027838 | PMC |
http://dx.doi.org/10.1038/s41401-020-0431-5 | DOI Listing |
Stem Cells Dev
January 2025
Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
Autologous hematopoietic stem cell transplantation is used to restore bone marrow function after high-dose chemotherapy. For apheresis, granulocyte colony-stimulating factor (G-CSF) is standard of care, but obtaining sufficient stem cells can be challenging. Other mobilization agents include plerixafor and PEGylated G-CSF (PEG-G-CSF).
View Article and Find Full Text PDFAnn Anat
December 2024
Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan. Electronic address:
Background: Erythroid cells contribute to embryonic organ development and adult tissue repair supplying oxygen to tissues. During mouse development, the primitive erythroid cells produced in the extraembryonic blood islands of the yolk sac begin to circulate as immature and nucleated erythroblasts with the onset of cardiac contractions around embryonic day 9.5 (E9.
View Article and Find Full Text PDFJ Environ Sci (China)
May 2025
College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China.
Phenanthrene (Phe) is one of the common polycyclic aromatic hydrocarbons in the environment, and recent studies show that it can cause cardiac developmental toxicity and immunotoxicity. However, it is still unknown whether it can affect the hematopoietic development in aquatic organisms. To address this question, zebrafish (Danio rerio) were chronically exposed to Phe at different concentrations.
View Article and Find Full Text PDFFront Immunol
October 2024
Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR-S-1310), Villejuif, France.
Purpose: The ability to generate natural killer (NK) cells from induced pluripotent stem cells (iPSCs) has given rise to new possibilities for the large-scale production of homogeneous immunotherapeutic cellular products and opened new avenues towards the creation of "off-the-shelf" cancer immunotherapies. However, the differentiation of NK cells from iPSCs remains poorly understood, particularly regarding the ontogenic landscape of iPSC-derived NK (iNK) cells produced and the influence that the differentiation strategy employed may have on the iNK profile.
Methods: To investigate this question, we conducted a comparative analysis of two sets of iNK cells generated from the same iPSC line using two different protocols: (i) a short-term, clinically compatible feeder-free protocol corresponding to primitive hematopoiesis, and (ii) a lymphoid-based protocol representing the definitive hematopoietic step.
Nat Cell Biol
November 2024
Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
Despite the biomedical importance of haematopoietic stem cells and haematopoietic progenitor cells, their in vitro stabilization in a developmental context has not been achieved due to limited knowledge of signals and markers specifying the multiple haematopoietic waves as well as ethically restricted access to the human embryo. Thus, an in vitro approach resembling aspects of haematopoietic development in the context of neighbouring tissues is of interest. Our established human pluripotent stem cell-derived heart-forming organoids (HFOs) recapitulate aspects of heart, vasculature and foregut co-development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!