The function of IM30 (also known as Vipp1) is linked to protection and/or remodeling of the thylakoid membrane system in chloroplasts and cyanobacteria. Recently, it has been revealed that the Arabidopsis IM30 protein exhibits GTP hydrolyzing activity in vitro, which was unexpected, as IM30 does not show any classical GTPase features. In the present study, we addressed the question, whether an apparent GTPase activity is conserved in IM30 proteins and can also be observed for IM30 of the cyanobacterium Synechocystis sp. PCC 6803. We show that Synechocystis IM30 is indeed able to bind and hydrolyze GTP followed by the release of P. Yet, the apparent GTPase activity of Synechocystis IM30 does not depend on Mg, which, together with the lack of classical GTPase features, renders IM30 an atypical GTPase. To elucidate the impact of this cryptic GTPase activity on the membrane remodeling activity of IM30, we tested whether GTP hydrolysis influences IM30 membrane binding and/or IM30-mediated membrane fusion. We show that membrane remodeling by Synechocystis IM30 is slightly affected by nucleotides. Yet, despite IM30 clearly catalyzing GTP hydrolysis, this does not seem to be vital for its membrane remodeling function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7299955PMC
http://dx.doi.org/10.1038/s41598-020-66818-9DOI Listing

Publication Analysis

Top Keywords

synechocystis im30
16
membrane remodeling
16
im30
13
gtp hydrolysis
12
gtpase activity
12
remodeling activity
8
classical gtpase
8
gtpase features
8
apparent gtpase
8
membrane
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!