Fusarium head blight (FHB) caused by Fusarium graminearum (Fg) is a devastating disease of crops, especially wheat and barley, resulting in significant yield loss and reduced grain quality. Fg infection leads to the production of mycotoxins, whose consumption is toxic to humans and livestock. The Arabidopsis DMR6 gene encodes a putative 2-oxoglutarate Fe(II)-dependent oxygenase (2OGO) and has been identified as a susceptibility factor to downy mildew. We generated site-specific mutations in Arabidopsis At2OGO by CRISPR/Cas9 gene editing. The resulting At2OGO knock-out (KO) mutants display enhanced resistance to Fg in a detached inflorescence infection assay. Expression profiling of defense genes revealed that impairment of At2OGO function resulted in the upregulation of defense genes that are regulated by salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) pathways. Complementation of the At2OGO-KO lines with a barley (cv. Conlon) orthologue, Hv2OGO, restored susceptibility to Fg. This result indicates that the Hv2OGO gene is functionally equivalent to its Arabidopsis counterpart and, hence, may have a similar role in conditioning susceptibility to FHB in barley. These results provide a molecular basis for proposing 2OGO as a plant immunity suppressor in Arabidopsis and potentially in barley plants and establish a rationale and strategy for enhancing FHB resistance in barley.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303206PMC
http://dx.doi.org/10.1038/s41598-020-67006-5DOI Listing

Publication Analysis

Top Keywords

arabidopsis dmr6
8
dmr6 gene
8
fusarium head
8
head blight
8
defense genes
8
gene
5
arabidopsis
5
barley
5
validation barley
4
barley 2ogo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!