Dysfunctional N-methyl-D-aspartate receptors (NMDARs) and cyclic adenosine monophosphate (cAMP) have been associated with deficits in synaptic plasticity and cognition found in neurodegenerative and neuropsychiatric disorders such as Alzheimer's disease (AD) and schizophrenia. Therapeutic approaches that indirectly enhance NMDAR function through increases in glycine and/or D-serine levels as well as inhibition of phosphodiesterases that reduces degradation of cAMP, are expected to enhance synaptic strength, connectivity and to potentially impact cognition processes. The present in vivo study investigated effects of subcutaneous administration of D-serine, the glycine transporter 1 (GlyT1) inhibitor SSR504734 and the PDE4 inhibitor rolipram, on network oscillations, connectivity and long-term potentiation (LTP) at the hippocampi circuits in Sprague-Dawley rats. In conscious animals, multichannel EEG recordings assessed network oscillations and connectivity at frontal and hippocampal CA1-CA3 circuits. Under urethane anaesthesia, field excitatory postsynaptic potentials (fEPSPs) were measured in the CA1 subfield of the hippocampus after high-frequency stimulation (HFS) of the Schaffer collateral-CA1 (SC) pathway. SSR504734 and rolipram significantly increased slow theta oscillations (4-6.5 Hz) at the CA1-CA3, slow gamma oscillations (30-50 Hz) in the frontal areas and enhanced coherence in the CA1-CA3 network, which were dissociated from motor behaviour. SSR504734 enhanced short-term potentiation (STP) and fEPSP responses were extended into LTP response, whereas the potentiation of EPSP slope was short-lived to STP with rolipram. Unlike glycine, increased levels of D-serine had no effect on network oscillations and limits the LTP induction and expression. The present data support a facilitating role of glycine and cAMP on network oscillations and synaptic efficacy at the CA3-CA1 circuit in rats, whereas raising endogenous D-serine levels had no such beneficial effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303193 | PMC |
http://dx.doi.org/10.1038/s41398-020-00875-6 | DOI Listing |
Bioengineering (Basel)
December 2024
Faculty of Electronics, Communication and Computers, Pitești University Center, National University of Science and Technology POLITEHNICA Bucharest, 110040 Pitesti, Romania.
Anxiety is a widespread mental health issue, and binaural beats have been explored as a potential non-invasive treatment. EEG data reveal changes in neural oscillation and connectivity linked to anxiety reduction; however, harmonics introduced during signal acquisition and processing often distort these findings. Existing methods struggle to effectively reduce harmonics and capture the fine-grained temporal dynamics of EEG signals, leading to inaccurate feature extraction.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Institute for Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden, Germany.
We present a synchronization transition study of the locally coupled Kuramoto model on extremely large graphs. We compare regular 405 and 1004 lattice results with those of 12,0002 lattice substrates with power-law decaying long links (ll). The latter heterogeneous network exhibits ds>4 spectral dimensions.
View Article and Find Full Text PDFCircadian entrainment and external cues can cause gene transcript abundance to oscillate throughout the day, and these patterns of diel transcript oscillation vary across genes and plant species. Less is known about within-species allelic variation for diel patterns of transcript oscillation, or about how regulatory sequence variation influences diel transcription patterns. In this study, we evaluated diel transcript abundance for 24 diverse maize inbred lines.
View Article and Find Full Text PDFTranscranial magnetic stimulation (TMS) over the left dorsolateral prefrontal cortex (L-DLPFC) is an established intervention for treatment-resistant depression (TRD), yet the underlying therapeutic mechanisms remain not fully understood. This study employs an integrative approach that combines TMS with concurrent functional magnetic resonance imaging (fMRI) and electroencephalography (EEG), aimed at assessing the acute/immediate effects of TMS on brain network dynamics and their correlation with clinical outcomes. Our study demonstrates that TMS acutely modulates connectivity within vital brain circuits, particularly the cognitive control and default mode networks.
View Article and Find Full Text PDFSci Rep
January 2025
Nanyang Technological University, Singapore, 639798, Singapore.
Although electric vehicles supplied through distributed generators (DGs) have been universally researched to reduce CO emissions, the accurate current sharing regarding islanded multi-bus DC charging stations considering three charging modes of electric vehicles, i.e., constant current mode, constant power mode and constant voltage mode, is rarely realized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!