Adropin is a peptide hormone which is produced in brain and peripheral tissues such as liver. It was found that adropin modulates lipid and glucose homeostasis by interacting with hepatocytes and myocytes. Adropin enhances insulin sensitivity and alleviates hyperinsulinemia in animal models with high-fat diet-induced insulin resistance. However, it is unknown whether adropin regulates insulin secretion and proliferation of beta cells. Therefore, we studied the effects of adropin on insulin secretion in INS-1E cells as well as isolated pancreatic islets. Furthermore, we assessed the influence of adropin on insulin mRNA expression, cell viability and proliferation in INS-1E cells. Pancreatic islets were isolated from male Wistar rats. mRNA expression was evaluated using real-time PCR and cell viability by MTT assay. Cell replication was measured by BrdU incorporation and insulin secretion by RIA. We found that adropin suppresses insulin mRNA expression in INS-1E cells. Moreover, adropin attenuates glucose-induced insulin secretion in INS-1E cells as well as in isolated pancreatic islets. In addition, using INS-1E cells we found that adropin suppresses glucose-induced cAMP production. However, adropin fails to modulate INS-1E cell viability and proliferation. In summary, we found adropin suppresses insulin mRNA expression and secretion, without affecting beta cell viability or proliferation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.26402/jpp.2020.1.09 | DOI Listing |
Tissue Cell
January 2025
Department of Endocrinology, Fuyang Cancer Hospital, Fuyang, Anhui Province 236000, PR China. Electronic address:
Background: Diabetes mellitus (DM), a chronic metabolic disease, is characterized by long-term hyperglycemia resulting from the defect of insulin production and insulin resistance. The damage and dysfunction of pancreatic β-cells is a main link in DM development.
Methods: In this work, pancreatic β-cell line INS-1E cells were exposed to 30 mM glucose for 48 h to construct an in vitro DM model.
Life Sci
February 2025
Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina. Electronic address:
Aims: Type 2 diabetes (T2D) is a prevalent metabolic disease linked to obesity and metabolic syndrome (MS). The glucolipotoxic environment (GLT) impacts tissues causing low-grade inflammation, insulin resistance and the gradual loss of pancreatic β-cell function, leading to hyperglycemia. We have previously shown that Compound A (CpdA), a plant-derived dissociative glucocorticoid receptor-modulator with inflammation-suppressive activity, displays protective effects on β-cells in type 1 diabetes murine models.
View Article and Find Full Text PDFJ Gastroenterol
January 2025
Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
Cells
November 2024
Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine of the Slovak Academy of Sciences, 841 04 Bratislava, Slovakia.
Sarco/endoplasmic reticulum Ca-ATPase (SERCA) is an important regulatory protein responsible for maintaining calcium homeostasis within cells. Impairment of SERCA associated with activity/expression decrease has been implicated in multiple chronic conditions, including cardiovascular diseases, diabetes, cancer, neurodegenerative diseases, and skeletal muscle pathologies. Natural polyphenols have been recognized to interact with several target proteins involving SERCA.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
Type 1 diabetes (T1D) is characterized by immune cell infiltration in the islets of Langerhans, leading to the destruction of insulin-producing beta cells. This destruction is driven by secreted cytokines and cytotoxic T cells inducing apoptosis in beta cells. Butyrate, a metabolite produced by the gut microbiota, has been shown to have various health benefits, including anti-inflammatory and anti-diabetic effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!