Pyroptosis is the caspase-dependent inflammatory cell death mechanism that underpins the innate immune response against pathogens and is dysregulated in inflammatory disorders. Pyroptosis occurs via two pathways: the canonical pathway, signaled by caspase-1, and the noncanonical pathway, regulated by mouse caspase-11 and human caspase-4/5. All inflammatory caspases activate the pyroptosis effector protein gasdermin D, but caspase-1 mostly activates the inflammatory cytokine precursors prointerleukin-18 and prointerleukin-1β (pro-IL18/pro-IL1β). Here, cleavage assays with recombinant proteins confirmed that caspase-11 prefers cleaving gasdermin D over the pro-ILs. However, we found that caspase-11 recognizes protein substrates through a mechanism that is different from that of most caspases. Results of kinetics analysis with synthetic fluorogenic peptides indicated that P1'-P4', the C-terminal gasdermin D region adjacent to the cleavage site, influences gasdermin D recognition by caspase-11. Furthermore, introducing the gasdermin D P1'-P4' region into pro-IL18 enhanced catalysis by caspase-11 to levels comparable with that of gasdermin D cleavage. Pro-IL1β cleavage was only moderately enhanced by similar substitutions. We conclude that caspase-11 specificity is mediated by the P1'-P4' region in its substrate gasdermin D, and similar experiments confirmed that the substrate specificities of the human orthologs of caspase-11, caspase-4 and caspase-5, are ruled by the same mechanism. We propose that P1'-P4'-based inhibitors could be exploited to specifically target inflammatory caspases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415983PMC
http://dx.doi.org/10.1074/jbc.RA120.014259DOI Listing

Publication Analysis

Top Keywords

pyroptosis effector
8
effector protein
8
gasdermin
8
protein gasdermin
8
caspase-11
8
inflammatory caspases
8
p1'-p4' region
8
inflammatory
6
extended subsite
4
subsite profiling
4

Similar Publications

Neuroinflammation in Age-Related Neurodegenerative Diseases: Role of Mitochondrial Oxidative Stress.

Antioxidants (Basel)

November 2024

Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain.

A shared hallmark of age-related neurodegenerative diseases is the chronic activation of innate immune cells, which actively contributes to the neurodegenerative process. In Alzheimer's disease, this inflammatory milieu exacerbates both amyloid and tau pathology. A similar abnormal inflammatory response has been reported in Parkinson's disease, with elevated levels of cytokines and other inflammatory intermediates derived from activated glial cells, which promote the progressive loss of nigral dopaminergic neurons.

View Article and Find Full Text PDF

Background: Gasdermin D (GSDMD) is a key effector molecule that activates pyroptosis through its N terminal domain (GSDMD-NT). However, the roles of GSDMD in colorectal cancer (CRC) have not been fully explored. The role of the full-length GSDMD (GSDMD-FL) is also not clear.

View Article and Find Full Text PDF

Inflammasomes are defense complexes that utilize cytokines and immunogenic cell death (ICD) to stimulate the immune system against pathogens. Inspired by their dual action, we present cytokine-armed pyroptosis as a strategy for boosting immune response against diverse types of tumors. To induce pyroptosis, we utilize designed tightly regulated gasdermin D variants comprising different pore-forming capabilities and diverse modes of activation, representing a toolbox of ICD inducers.

View Article and Find Full Text PDF

Targeted Activation of Programmed Cell Death Pathways by Optogenetics.

Methods Mol Biol

December 2024

Department of Immunobiology, University of Lausanne, Lausanne, Switzerland.

Regulated cell death is an important biological process by which an organism removes unwanted, malignant, or infected cells. Although it has become clear that different forms of regulated cell death exist, it remains difficult to compare their consequences at the cellular and tissue level as they are induced by different stimuli and proceed with different kinetics. Moreover, it was so far difficult to target and induce cell death in selected cells within cell populations or complex tissues without affecting its neighbors.

View Article and Find Full Text PDF

Inflammasomes: potential therapeutic targets in hematopoietic stem cell transplantation.

Cell Commun Signal

December 2024

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.

The realm of hematopoietic stem cell transplantation (HSCT) has witnessed remarkable advancements in elevating the cure and survival rates for patients with both malignant and non-malignant hematologic diseases. Nevertheless, a considerable number of patients continue to face challenges, including transplant-related complications, infection, graft failure, and mortality. Inflammasomes, the multi-protein complexes of the innate immune system, respond to various danger signals by releasing inflammatory cytokines and even mediating cell death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!