Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cassava starch was hydrolyzed with 2.2 M hydrochloric acid for different periods of time. The soluble starches obtained were subsequently used for microsphere preparation by a water-in-water emulsion crosslinking technique. The average chain lengths of starches hydrolyzed for 6, 12, 24, 36, and 48 h were 122.0, 106.3, 65.4, 33.2, and 28.3, respectively. Starches hydrolyzed for 6 and 12 h did not form regular shaped microspheres, while those hydrolyzed for 24, 36, and 48 h mostly formed separate spherical-shaped microparticles with average particle sizes of 14.6, 10.1, and 10.4 μm, respectively. The swelling power of starch microspheres (SMs) produced from 24 h hydrolyzed starch was 6.5-7.0 g/g, whereas those of SMs from 36 and 48 h hydrolyzed starch were higher and comparable (8.0-9.0 g/g). All the SMs were stable against high temperature (>140 °C). Susceptibility of the SMs to α-amylase hydrolysis decreased when the degree of starch hydrolysis increased.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.06.122 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!