Mutation S164A largely affects the transfructosylation properties of Bacillus subtilis levansucrase (SacB). The variant uses acceptors such as glucose and short levans with an average molecular weight of 7.6 kDa more efficiently than SacB, leading to the enhanced synthesis of medium and high molecular weight polymer and a blasto-oligosaccharide series with a polymerization degree of 2-10. A 3-fold increase in blasto-oligosaccharides yield is provoked by the modified interplay between the variant and glucose. Despite its modified product specificity, protein-carbohydrate and protein-protein interactions are still a major factor affecting size and distribution of levan molecular weight. This study highlights the importance of critical factors such as protein concentration in the analysis of wild-type and mutagenized levansucrases. Docking experiments with the crystal structures of SacB and variant S164A - the latter obtained at a 2.6 Å resolution - identified unreported potential binding subsites for fructosyl moieties on the surface of both enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.06.114DOI Listing

Publication Analysis

Top Keywords

molecular weight
12
mutation s164a
8
bacillus subtilis
8
subtilis levansucrase
8
product specificity
8
sacb variant
8
implications mutation
4
s164a bacillus
4
levansucrase product
4
specificity insights
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!