Background: Nine mRNA transcripts associated with acute cellular rejection (ACR) in previous microarray studies were ported to the clinically amenable NanoString nCounter platform. Here we report the diagnostic performance of the resulting blood test to exclude ACR in heart allograft recipients: HEARTBiT.

Methods: Blood samples for transcriptomic profiling were collected during routine post-transplantation monitoring in 8 Canadian transplant centres participating in the Biomarkers in Transplantation initiative, a large (n = 1622) prospective observational study conducted between 2009 and 2014. All adult cardiac transplant patients were invited to participate (median age = 56 [17 to 71]). The reference standard for rejection status was histopathology grading of tissue from endomyocardial biopsy (EMB). All locally graded ISHLT ≥ 2R rejection samples were selected for analysis (n = 36). ISHLT 1R (n = 38) and 0R (n = 86) samples were randomly selected to create a cohort approximately matched for site, age, sex, and days post-transplantation, with a focus on early time points (median days post-transplant = 42 [7 to 506]).

Results: ISHLT ≥ 2R rejection was confirmed by EMB in 18 and excluded in 92 samples in the test set. HEARTBiT achieved 47% specificity (95% confidence interval [CI], 36%-57%) given ≥ 90% sensitivity, with a corresponding area under the receiver operating characteristic curve of 0.69 (95% CI, 0.56-0.81).

Conclusions: HEARTBiT's diagnostic performance compares favourably to the only currently approved minimally invasive diagnostic test to rule out ACR, AlloMap (CareDx, Brisbane, CA) and may be used to inform care decisions in the first 2 months post-transplantation, when AlloMap is not approved, and most ACR episodes occur.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cjca.2019.11.017DOI Listing

Publication Analysis

Top Keywords

acute cellular
8
cellular rejection
8
heart allograft
8
diagnostic performance
8
ishlt ≥
8
≥ rejection
8
rejection
5
heartbit transcriptomic
4
transcriptomic signature
4
signature excluding
4

Similar Publications

Constitutive loss of kynurenine-3-monooxygenase changes circulating kynurenine metabolites without affecting systemic energy metabolism.

Am J Physiol Endocrinol Metab

January 2025

Molecular and Cellular Exercise Physiology, Department of physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

Kynurenic acid (KYNA) and quinolinic acid (QUIN) are metabolites of the kynurenine pathway of tryptophan degradation with opposing biological activities in the central nervous system. In the periphery, KYNA is known to positively affect metabolic health, whereas the effects of QUIN remain less explored. Interestingly, metabolic stressors, including exercise and obesity, differentially change the balance between circulating KYNA and QUIN.

View Article and Find Full Text PDF

Exercising regularly promotes health, but these benefits are complicated by acute inflammation induced by exercise. A potential source of inflammation is cell-free DNA (cfDNA), yet the cellular origins, molecular causes, and immune system interactions of exercise-induced cfDNA are unclear. To study these, 10 healthy individuals were randomized to a 12-wk exercise program of either high-intensity tactical training (HITT) or traditional moderate-intensity training (TRAD).

View Article and Find Full Text PDF

Spatiotemporal Dynamic Immunomodulation by Infection-Mimicking Gels Enhances Broad and Durable Protective Immunity Against Heterologous Viruses.

Adv Sci (Weinh)

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.

Despite their safety and widespread use, conventional protein antigen-based subunit vaccines face significant challenges such as low immunogenicity, insufficient long-term immunity, poor CD8 T-cell activation, and poor adaptation to viral variants. To address these issues, an infection-mimicking gel (IM-Gel) is developed that is designed to emulate the spatiotemporal dynamics of immune stimulation in acute viral infections through in situ supramolecular self-assembly of nanoparticulate-TLR7/8a (NP-TLR7/8a) and an antigen with tannic acid (TA). Through collagen-binding properties of TA, the IM-Gel enables sustained delivery and enhanced retention of NP-TLR7/8a and protein antigen in the lymph node subcapsular sinus of mice for over 7 days, prolonging the exposure of vaccine components in both B cell and T cell zones, leading to robust humoral and cellular responses.

View Article and Find Full Text PDF

CD300a and CD300A, among the CD300 immunoglobulin (Ig)-like receptor family members in mice and humans, respectively, are expressed on myeloid cell lineage. The interaction of CD300a and CD300A with their ligands phosphatidylserine and phosphatidylethanolamine, respectively, exposed on the plasma membrane of dead cells mediate an inhibitory signal in myeloid cells. We previously reported that a neutralizing antimouse CD300a monoclonal antibody (mAb) enhanced efferocytosis by macrophages and ameliorated acute ischemic stroke (AIS) in mice.

View Article and Find Full Text PDF

Discovery of WDR5-MLL1 and HDAC Dual-Target Inhibitors for the Treatment of Acute Myeloid Leukemia.

J Med Chem

January 2025

Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.

Targeting the WDR5-MLL1 protein-protein interaction (PPI) is considered to be an effective approach for the treatment of MLL-rearranged leukemia. However, interfering with WDR5-MLL1 PPI reduces methylated H3K4 levels and induces a decline in acetylated H3 levels, which may contribute to the suboptimal cellular efficacy of WDR5 inhibitors. We observed that cotreatment with WDR5-MLL1 PPI and HDAC inhibitors augmented the antiproliferative effect in MV-4-11 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!