A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design and characterization of dual responsive mesoporous silica nanoparticles for breast cancer targeted therapy. | LitMetric

Design and characterization of dual responsive mesoporous silica nanoparticles for breast cancer targeted therapy.

Eur J Pharm Sci

Pharmacy Department, G. H. Patel Pharmacy Building, The M. S. University of Baroda, Fatehgunj, Vadodara 390002, Gujarat, India. Electronic address:

Published: September 2020

The main reason for limited efficacy of anticancer drug is the poor accretion of administered amount of drug within the tumor. Here, chitosan folate capped dual responsive mesoporous silica nanoparticles (MSNs) which can actively target cancer cells, and provide burst release of loaded anticancer drug within tumor cells and ultimately leading to improved therapeutic efficacy were synthesized. MSNs were synthesized using most economic silica source, sodium silicate. Doxorubicin (DOX) was loaded within the pores of MSNs and these drug loaded MSNs were first reacted with cystamine dihydrochloride followed by capping with chitosan-folate conjugate (CH-FA) to produce dual (redox and pH) responsive nanoparticles with the ability to actively target breast cancer cells. A triggered release of DOX from MSNs under acidic redox (pH 5.5, 10 mM GSH) environment was confirmed by in vitro release studies. The formulation exhibited 2.14 and 1.65 folds higher cytotoxicity than free drug against MCF-7 and MDA-MB-231 cells. DOX-MSN-SS-CH-FA showed superior tumor suppressing activity as compared to DOX-MSN or DOX alone in the treatment of Ehrlich Ascites Carcinoma (EAC) induced breast cancer with significantly reduced hematological and organ specific toxicities associated with DOX treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2020.105428DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
dual responsive
8
responsive mesoporous
8
mesoporous silica
8
silica nanoparticles
8
anticancer drug
8
drug tumor
8
actively target
8
cancer cells
8
dox treatment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!