Objective: Hyperbaric oxygen treatment (HBOT) has demonstrated efficacy in improving hearing levels of patients with idiopathic sudden sensorineural hearing loss (ISSHL); however, the underlying mechanisms are not well understood. HBOT alleviates the inflammatory response, which is mediated by Toll-like receptor (TLR) 4 and nuclear factor (NF)-κB. In this study we investigated whether HBOT attenuates inflammation in ISHHL patients alteration of TLR4 and NF-κB expression.

Methods: ISHHL patients ( = 120) and healthy control subjects ( = 20) were enrolled in this study. Patients were randomly divided into medicine group treated with medicine only ( = 60) and HBO group receiving both HBOT and medicine ( = 60). Audiometric testing was performed pre- and post-treatment. TLR4, NF-кB, and TNF-α expression in peripheral blood of ISSHL patients and healthy control subjects was assessed by ELISA before and after treatment.

Results: TLR4, NF-κB, and TNF-α levels were upregulated in ISSHL patients relative to healthy control subjects; the levels were decreased following treatment and were lower in the HBO group than that in the medicine group post-treatment ( < 0.05 and < 0.01).

Conclusion: HBOT alleviates hearing loss in ISSHL patients by suppressing the inflammatory response induced by TLR4 and NF-κB signaling.

Download full-text PDF

Source
http://dx.doi.org/10.3967/bes2020.045DOI Listing

Publication Analysis

Top Keywords

hearing loss
12
tlr4 nf-κb
12
healthy control
12
control subjects
12
isshl patients
12
hyperbaric oxygen
8
oxygen treatment
8
sudden sensorineural
8
sensorineural hearing
8
patients
8

Similar Publications

Microvascular decompression is considered a first-line treatment in classical trigeminal neuralgia. Teflon is the material commonly used. The use of autologous muscle has been occasionally reported.

View Article and Find Full Text PDF

[Empowering patients through app-based cochlear implant self-adjustment].

HNO

January 2025

Deutsches Hörzentrum der Medizinischen Hochschule Hannover, Karl-Wiechert-Allee 3, 30625, Hannover, Deutschland.

Treatment of patients with severe hearing loss or deafness using cochlear implants (CI) is nowadays clinical routine. In the Hannover Medical School alone, more than 500 patients are treated with CI annually, meaning that the pool of patients with CI increases significantly each year. Worldwide, there are over 1 million patients with a CI system; in Germany the figure is estimated at over 60,000.

View Article and Find Full Text PDF

Perilymphatic fistula caused by Eustachian tube air inflation.

Auris Nasus Larynx

January 2025

Department of Otorhinolaryngology, Head and Neck surgery, Aichi Medical University School of Medicine, 1-1, Yazakokarimata, Nagakute, Aichi 480-1195, Japan.

We present a case of a perilymphatic fistula (PLF) caused by Eustachian tube air inflation (ETAI) that was diagnosed using cochlin-tomoprotein (CTP) testing and successfully treated using transcanal endoscopic ear surgery to seal the inner ear window. A 77-year-old woman developed hearing loss and dizziness after undergoing ETAI at a local ear, nose, and throat clinic. Despite initial bed rest and steroid pulse therapy, the hearing did not improve, and transcanal endoscopic ear surgery was performed to repair the PLF.

View Article and Find Full Text PDF

Objective: In this study, the research team aimed to explore the therapeutic effectiveness of hyperbaric oxygen therapy (HBOT) for noise-induced hearing loss (NIHL), its influence on patient prognosis, and its impact on hearing to provide valuable clinical evidence.

Methods: Ninety-four patients with NIHL admitted to The First People's Hospital of Changde City, Hunan, China, from May 2021 to January 2023 were selected for this retrospective analysis. Among them, 43 were given conventional treatment (control group) and 51 were given HBOT (observation group).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!