Background: Pluripotent stem cells present the ability to self-renew and undergo differentiation into any cell type building an organism. Importantly, a lot of evidence on embryonic stem cell (ESC) differentiation comes from in vitro studies. However, ESCs cultured in vitro do not necessarily behave as cells differentiating in vivo. For this reason, we used teratomas to study early and advanced stages of in vivo ESC myogenic differentiation and the role of Pax7 in this process. Pax7 transcription factor plays a crucial role in the formation and differentiation of skeletal muscle precursor cells during embryonic development. It controls the expression of other myogenic regulators and also acts as an anti-apoptotic factor. It is also involved in the formation and maintenance of satellite cell population.

Methods: In vivo approach we used involved generation and analysis of pluripotent stem cell-derived teratomas. Such model allows to analyze early and also terminal stages of tissue differentiation, for example, terminal stages of myogenesis, including the formation of innervated and vascularized mature myofibers.

Results: We determined how the lack of Pax7 function affects the generation of different myofiber types. In Pax7-/- teratomas, the skeletal muscle tissue occupied significantly smaller area, as compared to Pax7+/+ ones. The proportion of myofibers expressing Myh3 and Myh2b did not differ between Pax7+/+ and Pax7-/- teratomas. However, the area of Myh7 and Myh2a myofibers was significantly lower in Pax7-/- ones. Molecular characteristic of skeletal muscles revealed that the levels of mRNAs coding Myh isoforms were significantly lower in Pax7-/- teratomas. The level of mRNAs encoding Pax3 was significantly higher, while the expression of Nfix, Eno3, Mck, Mef2a, and Itga7 was significantly lower in Pax7-/- teratomas, as compared to Pax7+/+ ones. We proved that the number of satellite cells in Pax7-/- teratomas was significantly reduced. Finally, analysis of neuromuscular junction localization in samples prepared with the iDISCO method confirmed that the organization of neuromuscular junctions in Pax7-/- teratomas was impaired.

Conclusions: Pax7-/- ESCs differentiate in vivo to embryonic myoblasts more readily than Pax7+/+ cells. In the absence of functional Pax7, initiation of myogenic differentiation is facilitated, and as a result, the expression of mesoderm embryonic myoblast markers is upregulated. However, in the absence of functional Pax7 neuromuscular junctions, formation is abnormal, what results in lower differentiation potential of Pax7-/- ESCs during advanced stages of myogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7301568PMC
http://dx.doi.org/10.1186/s13287-020-01742-3DOI Listing

Publication Analysis

Top Keywords

pax7-/- teratomas
24
advanced stages
12
lower pax7-/-
12
teratomas
9
pax7-/-
9
early advanced
8
differentiation
8
esc differentiation
8
pluripotent stem
8
myogenic differentiation
8

Similar Publications

Generation of musculoskeletal cells from human urine epithelium-derived presomitic mesoderm cells.

Cell Biosci

July 2024

Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China.

Background: Numerous studies have shown that somite development is a necessary stage of myogenesis chondrogenesis and osteogenesis. Our previous study has established a stable presomitic mesoderm progenitor cell line (UiPSM) in vitro. Naturally, we wanted to explore whether UiPSM cell can develop bone and myogenic differentiation.

View Article and Find Full Text PDF

Differentiation of pluripotent stem cells (PSCs) is a promising approach to obtaining large quantities of skeletal myogenic progenitors for disease modeling and cell-based therapy. However, generating skeletal myogenic cells with high regenerative potential is still challenging. We recently reported that skeletal myogenic progenitors generated from mouse PSC-derived teratomas possess robust regenerative potency.

View Article and Find Full Text PDF

In vitro expanded skeletal myogenic progenitors from pluripotent stem cell-derived teratomas have high engraftment capacity.

Stem Cell Reports

December 2021

Department of Pediatrics, University of Minnesota, 2231 6th Street SE, Cancer and Cardiovascular Research Building, Minneapolis, MN 55455 USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA; Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA. Electronic address:

One major challenge in realizing cell-based therapy for treating muscle-wasting disorders is the difficulty in obtaining therapeutically meaningful amounts of engraftable cells. We have previously described a method to generate skeletal myogenic progenitors with exceptional engraftability from pluripotent stem cells via teratoma formation. Here, we show that these cells are functionally expandable in vitro while retaining their in vivo regenerative potential.

View Article and Find Full Text PDF

PAX7 Balances the Cell Cycle Progression via Regulating Expression of and in Differentiating PSCs.

Cells

August 2021

Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.

PAX7 transcription factor plays a crucial role in embryonic myogenesis and in adult muscles in which it secures proper function of satellite cells, including regulation of their self renewal. PAX7 downregulation is necessary for the myogenic differentiation of satellite cells induced after muscle damage, what is prerequisite step for regeneration. Using differentiating pluripotent stem cells we documented that the absence of functional PAX7 facilitates proliferation.

View Article and Find Full Text PDF

Pax7 as molecular switch regulating early and advanced stages of myogenic mouse ESC differentiation in teratomas.

Stem Cell Res Ther

June 2020

Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.

Background: Pluripotent stem cells present the ability to self-renew and undergo differentiation into any cell type building an organism. Importantly, a lot of evidence on embryonic stem cell (ESC) differentiation comes from in vitro studies. However, ESCs cultured in vitro do not necessarily behave as cells differentiating in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!