Further identification of a 140bp sequence from amid intron 9 of human FMR1 gene as a new exon.

BMC Genet

Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Xiamen University School of Medicine, 156 Xi'erhuanbei Road, Fuzhou City, Fujian Province, 350025, People's Republic of China.

Published: June 2020

Background: The disease gene of fragile X syndrome, FMR1 gene, encodes fragile X mental retardation protein (FMRP). The alternative splicing (AS) of FMR1 can affect the structure and function of FMRP. However, the biological functions of alternatively spliced isoforms remain elusive. In a previous study, we identified a new 140bp exon from the intron 9 of human FMR1 gene. In this study, we further examined the biological functions of this new exon and its underlying signaling pathways.

Results: qRT-PCR results showed that this novel exon is commonly expressed in the peripheral blood of normal individuals. Comparative genomics showed that sequences paralogous to the 140 bp sequence only exist in the genomes of primates. To explore the biological functions of the new transcript, we constructed recombinant eukaryotic expression vectors and lentiviral overexpression vectors. Results showed that the spliced transcript encoded a truncated protein which was expressed mainly in the cell nucleus. Additionally, several genes, including the BEX1 gene involved in mGluR-LTP or mGluR-LTD signaling pathways were significantly influenced when the truncated FMRP was overexpressed.

Conclusions: our work identified a new exon from amid intron 9 of human FMR1 gene with wide expression in normal healthy individuals, which emphasizes the notion that the AS of FMR1 gene is complex and may in a large part account for the multiple functions of FMRP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7301526PMC
http://dx.doi.org/10.1186/s12863-020-00870-2DOI Listing

Publication Analysis

Top Keywords

fmr1 gene
20
intron human
12
human fmr1
12
biological functions
12
amid intron
8
gene
7
fmr1
6
exon
5
identification 140bp
4
140bp sequence
4

Similar Publications

Background: Autosomal dominant Alzheimer's Disease (ADAD) represents around 0.5% of all AD cases, and is caused by mutations in PSEN1, PSEN2 and APP genes. Gene expression studies can be useful for unravelling the physiopathology of AD and identifying potential biomarkers.

View Article and Find Full Text PDF

Sensory disabilities have been identified as significant risk factors for dementia but underlying molecular mechanisms are unknown. In different Drosophila models with loss of sensory input, we observe non-autonomous induction of the integrated stress response (ISR) deep in the brain, as indicated by eIF2α phosphorylation-dependent elevated levels of the ISR effectors ATF4 and XRP1. Unlike during canonical ISR, however, the ATF4 and XRP1 transcription factors are enriched in cytosolic granules that are positive for RNA and the stress granule markers Caprin, FMR1, and p62, and are reversible upon restoration of vision for blind flies.

View Article and Find Full Text PDF

CYFIP2: potential pancreatic cancer biomarker and immunotherapeutic target.

Discov Oncol

December 2024

The First Affiliated Hospital of Nanchang University, Nanchang University, 17 Yongwai Zhengjie, Donghu District, Nanchang, 330006, People's Republic of China.

Objective: It has been shown that the CYFIP2 (Cytoplasmic FMR1-interacting protein 2) gene is apoptosis p53-dependent and is associated with poor prognosis in malignant tumors such as gastric cancer and other and cervical cancer. However, the prognostic potential of CYFIP2 in pancreatic cancer remains unclear. In this work, we first explain the great potential of CYFIP2 malignant progression from a broader perspective (pan-cancer) and confirm its oncogenic value in pancreatic cancer.

View Article and Find Full Text PDF

Fragile X Syndrome (FXS) is characterized by intellectual impairment caused by CGG repeat expansion in the FMR1 gene. When repeats exceed 200, they induce DNA methylation of the promoter and the repeat region, resulting in transcriptional silencing of the FMR1 gene and the subsequent loss of FMRP protein. In the past decade or so, research has focused on the role of FMRP as an RNA-binding protein involved in translation inhibition in the brain in FXS model mice, particularly by slowing or stalling ribosome translocation on mRNA.

View Article and Find Full Text PDF

Autism is clinically defined by challenges with social language, including difficulties offering on-topic language in a conversation. Similar differences are also seen in genetically related conditions such as fragile X syndrome (FXS), and even among those carrying autism-related genes who do not have clinical diagnoses (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!